

ABB MEASUREMENT & ANALYTICS | DATA SHEET

Advance Optima AO2000 Series

Continuous gas analyzers

Measurement made easy

Modular continuous gas analyzers

A wide variety of measurement technology

- Analyzer modules for all process and emission monitoring applications
- Up to four analyzer modules handling a total of six sample components
- 'Safety concept' for measuring flammable gases in Zone 2 and for measuring corrosive and toxic gases
- Performance-tested for emission monitoring in accordance with EN 15267

Straightforward handling

- Common controls, common connection technology
- Automatic calibration with air or integral calibration cells eliminating the need for test gas cylinders
- Modular design for ease of service
- Self-monitoring function indicates when maintenance is required

Application-oriented design

- Housing design for 19-inch rack mounting or wall mounting
- Optional gas extraction
- Ethernet, Modbus® and PROFIBUS® interfaces
- Configurable analog and digital inputs and outputs

User-friendly operation

- Simultaneous numeric display and bar graph of measured values on a large graphics panel
- Menu-driven operator interface
- Clear-text status messages

The modular product line

Overview

Advance Optima AO2000 Series is a modular product line used for continuous process gas analysis.

The product line consists of the following modules:

- · Analyzer modules,
- · Pneumatic module,
- Electronics module with system controller and I/O modules,
- · Housing with display and control unit and
- System bus.

The modules can be arranged in various ways to form single or multiple analyzer systems.

The electronics module, power supply and housing with display and control unit are also collectively referred to as the 'central unit'.

Measuring technology (analyzer modules)

The following analyzer modules are available for selection:

Measurement principle	Analyzer module
Infrared photometer analyzer module	Uras26
Process photometer analyzer modules	Limas21 UV
	Limas21 HW
Oxygen analyzer modules	Manos206
	Magnos28
	Magnos27
Trace oxygen analyzer module	ZO23
Thermal conductivity analyzer modules	Caldos25
	Caldos27
FID analyzer modules	Fidas24
	Fidas24 Ex
	Fidas24 NMHC
Laser analyzer module	LS25
Electrochemical oxygen sensor	

Each analyzer module consists of the sensor and associated electronics having its own processor.

The analyzer modules are connected to the system controller through the system bus. The laser analyzer module is connected to the central unit via Ethernet.

The analyzer modules are supplied with DC 24 V from an integral power supply or an external unit.

The electrochemical oxygen sensor is available as an option in combination with an analyzer module.

Pneumatic Module

When fully equipped, the pneumatic module includes one or three solenoid valves for test gas supply, one or two disposable filters for fine filtration, a pump with coarse filter and capillary tube for gas feed and one or two flow sensors for flow monitoring.

The pneumatics module is always associated with an analyzer module and installed in the same housing as the analyzer module.

Housing version

The system housing is available as a 19-inch rack-mount (model AO2020) or a wall-mount (model AO2040) unit with IP 20 or IP 54 housing protection (IP 40 in the version for emissions measurement).

IP 54 housing versions can be purged.

The display and control unit is located on the front panel of the housing when the electronics module is installed.

... The modular product line

Electronics module, interfaces

The electronics module incorporates the system controller with the I/O-modules.

The system controller carries out the following functions:

- Processing and communicating the measured values supplied by the analyzer module sensor electronics,
- Compensating measured values, e.g. cross sensitivity correction,
- Controlling system functions, e.g. calibration.
- · Display and control functions,
- · Controlling associated systems, e.g. gas supply,
- Communicating with external systems.

The system controller communicates with the other functional units of the gas analyzer, such as the analyzer modules, via the system bus.

Interfaces for controlling associated systems and for communicating with external systems are located on the system controller (Ethernet 10/100/1000BASE-T interface) and on the I/O modules.

The I/O modules are attached and directly connected to the system controller board. There are six types of I/O modules:

- PROFIBUS® module with one RS485 and one MBP interface
- Modbus® module with one RS485 and one RS232 interface,
- Digital I/O module with four digital inputs and four digital outputs,
- 2-way analog output modules have two analog outputs
- 4-way analog output modules have four analog outputs,
- 4-way analog input modules have four analog inputs.

Examples of I/O module applications include:

- · Output of measured values as current signals,
- · Output of status and alarm signals,
- · Calibration control,
- · Control of external solenoid valves and pumps,
- · Measuring range switching and feedback,
- Feed of current or status signals from external analyzers,
- Feed of status signals from peripherals.

System bus

The gas analyzer's functional units are interconnected via the system bus.

The system bus structure is linear with a maximum length of 350 meters.

Only one electronics module with up to five I/O modules should be connected to a system bus structure.

Sample gas line conditioning

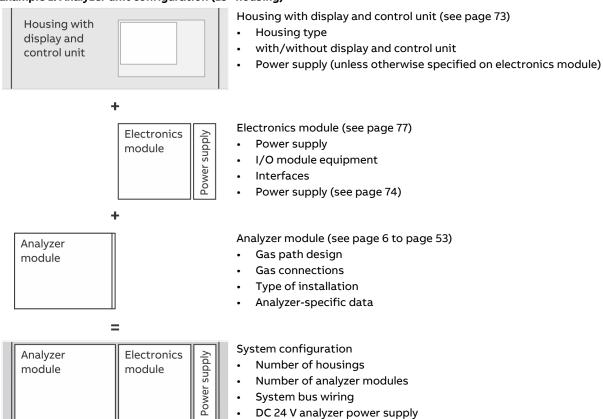
The SCC-F sample gas feed unit and the SCC-C sample gas cooler can be connected to the gas analyzer via the system bus by means of an I/O board installed in the sample gas feed unit.

Thus it is possible to display, monitor and control individual sample gas conditioning functions in the gas analyzer, such as cooler temperature or condensate and flow status.

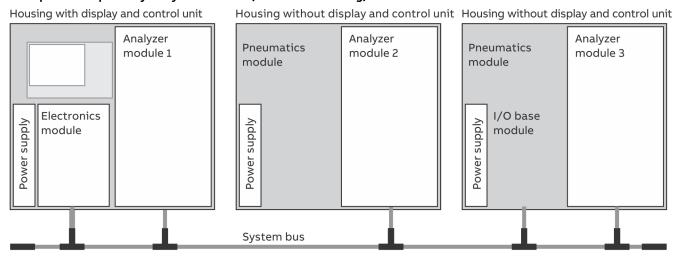
For further information, please refer to the 'DS/SCC – System components and accessories for sample gas conditioning' data sheet.

Notes on the metrological data of the analyzer modules

- The metrological data for the analyzer modules apply only when operated in conjunction with the central unit.
- The measurement-related data has been determined in accordance with IEC 61207-1:2010 'Expression of performance of gas analyzers – Part 1: General'. They are based on operation at atmospheric pressure (1013 hPa) and nitrogen as the associated gas. Compliance with these characteristics when measuring other gas mixtures can only be assured if their composition is known.
- The physical detection limit is the lower limit of the measurement-related data relative to the measuring range span.


Configuration of analyzer units and multiple analyzer systems

This data sheet contains specifications for all modules in the Advance Optima AO2000 Series modular product line.


This data sheet was not intended to be used for configuring an analyzer unit or a multiple analyzer system. For a quotation please contact your ABB sales representative who can also provide advice and support during configuration. **Example 1** shows the modules and components that normally make up an analyzer unit as well as the selection possibilities for configuring an analyzer unit.

The modular product line allows modules and components to be formed into an analyzer unit (see **Example 1**) or into multiple analyzer systems (**Example 2**).

Example 1: Analyzer unit configuration (19" housing)

Example 2: Multiple analyzer system variant (wall-mount housing)

Infrared analyzer module Uras26

Measuring principle

Non-dispersive infrared absorption

Photometer with 1 or 2 beam paths (gas paths) to measure up to 4 sample components

Sample components and measurement ranges

The Uras26 analyzer module has one physical measuring range per sample component. As an option, smaller measuring ranges can be electronically derived from the physical measurement range. The smallest range is measurement range 1.

The smallest measuring ranges specified in the following table refer to the 1st sample component in beam path 1.

Sample	Smallest class 1	Smallest class 2	Smallest meas.	Gas
compone	e range	range	range Class 2 with	group*
nt			calibration cell	
со	0 to 50 ppm	0 to 10 ppm	0 to 50 ppm**	Α
CO ₂	0 to 50 ppm	0 to 5 ppm	0 to 25 ppm**	Α
NO	0 to 75 ppm	0 to 75 ppm	0 to 75 ppm**	Α
SO ₂	0 to 100 ppm	0 to 25 ppm	0 to 25 ppm**	Α
N ₂ O	0 to 50 ppm	0 to 20 ppm	0 to 50 ppm**	Α
CH ₄	0 to 100 ppm	0 to 50 ppm	0 to 50 ppm**	Α
NH₃	0 to 500 ppm	0 to 30 ppm	-	В
C ₂ H ₂	0 to 200 ppm	0 to 100 ppm	0 to 100 ppm	В
C ₂ H ₄	0 to 500 ppm	0 to 300 ppm	0 to 300 ppm	В
C ₂ H ₆	0 to 100 ppm	0 to 50 ppm	0 to 50 ppm**	В
C ₃ H ₆	0 to 250 ppm	0 to 100 ppm	0 to 100 ppm**	В
C ₃ H ₈	0 to 100 ppm	0 to 50 ppm	0 to 50 ppm**	В
C ₄ H ₁₀	0 to 100 ppm	0 to 50 ppm	0 to 50 ppm**	В
C ₆ H ₁₄	0 to 500 ppm	0 to 100 ppm	0 to 100 ppm**	В
R 134a	0 to 100 ppm	0 to 50 ppm	0 to 50 ppm**	В
SF ₆	0 to 5 ppm	0 to 4 ppm	_	В
H₂O	0 to 1000 ppm	0 to 500 ppm	0 to 500 ppm	С

^{*} See price information

Note

Other sample components on request.

Number of measuring ranges

1 to 4 measuring ranges per sample component

Largest measuring range

0 to 100 vol.-% or 0 vol.-% to saturation or 0 vol.-% to LEL Measuring ranges within ignition limits cannot be provided.

Measuring range ratio

≤ 1:20

Measuring ranges with suppressed zero point

Electronic zero-point suppression or differential measurement based on a base level > 0 with flowing reference gas, max. suppression ratio of 1:10

Stability

The following data only applies if all the influence variables (e.g. flow, temperature and air pressure) are constant.

The following data only applies if all the influence variables (e.g. flow, temperature and air pressure) are constant. They apply to measurement range 1 in a delivered analyzer module.

Linearity error

≤1% of span

Option: linearization in accordance with EPA -specifications for automotive exhaust gas measurement

Repeatability

≤ 0.5 % of span

Zero point drift

≤1% of span per week; for ranges smaller than class 1 to class 2: ≤3% of span per week

Span drift

≤ 1 % of measured value per week

Output signal fluctuation (2 σ)

 \leq 0.2 % of span at electronic T90 time = 5 s (class 1) or = 15 s (class 2)

Detection limit (4 σ)

 \leq 0.4 % of span at electronic T90 time = 5 sec (class 1) or = 15 sec (class 2)

^{**} The smallest measuring range 1 is shown. The largest measurement range should be at least four times larger.

Influences

Flow effect

Flow rate in the 20 to 100 l/h range: Within the detection limit

Associated gas effect/cross sensitivity

Analyzer calibration should be based on an analysis of the sample gas.

Selectivation measures to reduce the associated gas effect (options):

Incorporation of interference filters or filter cells, internal electronic cross-sensitivity or carrier gas correction for one sample component by other sample components measured with the Uras26.

Temperature effect

Ambient temperature in permissible range

- at the zero point:
 - \leq 1 % of the span per 10 °C; for measuring ranges smaller than class 1 to class 2:
 - ≤ 2 % of the span per 10 °C
- on the sensitivity with temperature compensation:
 ≤ 3 % of the measured value per 10 °C
- on the sensitivity with thermostat effect at 55 °C (optional): ≤ 1 % of the measured value per 10 °C

Air pressure effect

- At the zero point: no influence effect
- On sensitivity with pressure correction using an integrated pressure sensor:
 - \leq 0.2 % of the measured value per 1 % of air pressure change

Power supply effect

DC 24 V \pm 5 %: \leq 0.2 % of span

Dynamic response

Warm-up time

approx. 30 minutes without thermostat; approx. 2 hours with thermostat.

T₉₀ time

 T_{90} = 2.5 sec for measurement cell length = 200 mm and sample gas flow = 60 l/h without signal damping (low pass filter). Low-pass time constant adjustable from 0 to 60 sec

Calibration

Zero-point calibration

With inert gas, e.g. nitrogen, or with ambient air that is free of the sample component.

End-point calibration

with gas-filled calibration cells (optional) or with test gas mixtures. It is recommended to verify the calibration cell set values once a year.

During calibration of a multi-component analyzer, possible cross-sensitivity and/or carrier gas corrections by internal or external measurement components are switched off. Therefore, corrected measurement components should be calibrated only using a test gas consisting of the measurement component and an inert gas like nitrogen.

Materials

Analyzer (sample cells)

- Tube: aluminum or gold-plated aluminum;
- window: CaF₂, optional: BaF₂;
- Connectors: stainless steel, 1.4571

Gas lines and connectors

- Gas lines: FPM hoses or PTFE tubes with stainless steel connectors;
 - Optional: stainless steel tubes 1.4571 Gas connectors: stainless steel, 1.4571
- ·

Gas connections

Refer to Gas connections Uras26 on page 56.

... Infrared analyzer module Uras26

Sample gas inlet conditions

Uras26 - sample gas input conditions

Temperature

The sample gas dew point should be at least 5 $^{\circ}$ C below the temperature throughout the sample gas path. Otherwise a sample gas cooler or condensate trap is required.

Pressure

The analyzer is operated under atmospheric pressure; the sample gas outlet is open to atmosphere.

Internal pressure drop:	< 5 hPa at standard flow rate of 60 l/h.
Permissible absolute pressure	800 to 1250 hPa.
range:	Operation under lower absolute
	pressure (e.g. at altitudes above
	2000 m) on request.
Gauge pressure in the sample cell:	max. 500 hPa.
Flow rate	20 to 100 l/h

Corrosive gases

Highly corrosive associated gas components, e.g. chlorine Cl₂) and hydrogen chloride (HCl), as well as gases or aerosols containing chlorine must be cooled or undergo prior absorption. Provide for housing purge.

Flammable gases

The analyzer module is suited for the measurement of flammable gases and vapors under atmospheric conditions ($p_{abs} \le 1.1$ bar, oxygen content ≤ 21 vol.-%). Temperature class: T4.

If the sample gas is explosive in the event of a sample gas supply failure, then only seldom and briefly (in accordance with zone 2).

Pressure in the sample gas path in standard operation $p_e \le 100$ hPa; in case of a sample gas supply failure the pressure must not up-scale the maximum value $p_e = 500$ hPa.

The version with gas paths designed as stainless steel tubes should be selected and housing purge with nitrogen should be provided when measuring flammable gases and vapors.

Before using the analyzer module, the corrosion resistance against the specific sample gas must be checked.

Version in category 3G see **Use in potentially explosive atmospheres** on page 68

Process photometer analyzer module Limas21 UV

Measuring principle

Gas filter correlation or wavelength comparison in ultraviolet and visible spectrum range $\lambda = 200\ to\ 600\ nm$

Photometer to measure from 1 to 4 components.

Sample cells made from various materials are available for measurement in corrosive, toxic and flammable gases (see **Sample** cells for Limas21 UV, Limas21 HW on page 16).

Sample components and measurement ranges

The Limas21 UV analyzer module has one physical measurement range per sample component. As an option, smaller measuring ranges can be electronically derived from the physical measurement range. The smallest range is measurement range 1.

Sample component	Smallest class 1	Smallest class 2	Gas
	range	range	group*
NO**	0 to 50 ppm	0 to 10 ppm	Α
SO ₂	0 to 150 ppm	0 to 25 ppm	Α
NO ₂	0 to 250 ppm	0 to 50 ppm	В
NH ₃	0 to 100 ppm	0 to 30 ppm	В
H₂S	0 to 50 ppm	0 to 25 ppm	В
Cl ₂	0 to 250 ppm	0 to 100 ppm	D
CS ₂	0 to 100 ppm	0 to 50 ppm	С
cos	0 to 500 ppm	0 to 250 ppm	С

- * See price information
- ** The UV-RAS (ultra-violet resonant absorption spectroscopy) method is used to make the analyzer selective to the sample component NO.

Other sample components on request.

Number of measuring ranges

1 to 4 measuring ranges per sample component

Largest measuring range

0 to 100 vol.% or 0 vol.% to saturation or 0 vol.% to LEL Measuring ranges within ignition limits cannot be provided.

Measuring range ratio

Measurement ranges freely adjustable within a range ratio of 1:20 relative to the factory-set reference measuring range

Measuring ranges with suppressed zero point

Electronic zero-point suppression, max. suppression ratio of 1:10

Stability

The following data only applies if all the influence variables (e.g. flow, temperature and air pressure) are constant. They apply to measurement range 1 in a delivered analyzer module.

Linearity error

 \leq 1 % of span; option: linearization in accordance with EPA specifications for automotive exhaust gas measurement

Repeatability

≤ 0.5 % of span

Zero drift

≤ 2 % of span per week;

for measuring ranges smaller than class 1 to class 2: ≤ 1.5 % of span per day (recommendation: daily automatic zero point calibration)

Span drift

≤ 1 % of measured value per week

Output signal fluctuation (2 σ)

 \leq 0.5 % of span with electronic T₉₀-time = 10 s; for measuring ranges smaller than class 1 to class 2: \leq 1 % of span

Detection limit (4 σ)

 \leq 1 % of span; for ranges smaller than class 1 to class 2:

≤ 2 % of span

... Process photometer analyzer module Limas21 UV

Influences

Flow effect

Flow rate in the 20 to 100 l/h range: Within the detection limit

Associated gas effect/cross sensitivity

Analyzer calibration should be based on an analysis of the sample gas.

Selectivation measures to reduce the associated gas effect (options):

Incorporation of filter cells or internal electronic crosssensitivity or carrier gas correction for one sample component by other sample components measured with the Limas21 UV.

Temperature effect

Ambient temperature in permissible range, Sample cell thermostat control to +60 $^{\circ}$ C

- at the zero point:
 ≤ 1 % of the span per 10 °C;
 for measuring ranges smaller than class 1 to class 2:
 ≤ 2 % of the span per 10 °C
- on the sensitivity:
 ≤ 1 % of the measured value per 10 °C

Air pressure effect

- At the zero point: no influence effect
- On sensitivity with pressure correction using an integrated pressure sensor:
 ≤ 0.2 % of the measured value per 1 % of air pressure change

Power supply effect

DC 24 V \pm 5 %: \leq 0.2 % of span

Dynamic response

Warm-up time

Approx. 2.5 hour

T₉₀ time

 T_{90} = 4 s for measurement cell length = 262 mm and sample gas flow = 60 l/h without signal damping (low pass filter). Low-pass time constant adjustable from 0 to 60 sec

Calibration

Zero-point calibration

With inert gas, e.g. nitrogen, or with ambient air that is free of the sample component.

End-point calibration

with gas-filled calibration cells (optional) or with test gas. It is recommended to verify the calibration cell set values once a year.

During calibration of a multi-component analyzer, possible cross-sensitivity and/or carrier gas corrections by internal or external measurement components are switched off. Therefore, corrected measurement components should be calibrated only using a test gas consisting of the measurement component and an inert gas such as nitrogen.

Materials

Refer to **Sample cells for Limas21 UV, Limas21 HW** on page 16.

Housing purge

Purge gas

Refer to **Sample cells for Limas21 UV, Limas21 HW** on page 16.

Sample gas inlet conditions

Limas21 UV - sample gas input conditions Temperature The sample gas dew point should be at least 5 $^{\circ}\text{C}$ below the temperature throughout the sample gas path. Otherwise a sample gas cooler or condensate trap is required. Pressure The analyzer is operated under atmospheric pressure; the sample gas outlet is open to atmosphere. < 5 hPa at standard flow rate of 60 l/h. Internal pressure drop: Permissible absolute pressure 800 to 1250 hPa. range: Operation under lower absolute pressure (e.g. at altitudes above 2000 m) on request. Gauge pressure in the sample cell: max. 500 hPa.

20 to 100 l/h

Corrosive, toxic and flammable gases Refer to **Sample cells for Limas21 UV, Limas21 HW** on page 16.

Gas connections

Flow rate

Refer to Limas21 on page 57.

Process photometer analyzer module Limas21 HW

Measuring principle and application

Limas21 HW is a multi-component analyzer for simultaneous measurement of nitrogen compounds in wet sulfur-free flue gas without converter.

Measurement principle

Photometer to measure NO, NO₂ and NH₃.

Selectivation on the sample component NO using the UV-RAS (ultra-violet resonant absorption spectroscopy) method.

Wavelength comparison in ultraviolet spectrum range λ = 200 to 600 nm.

Application

Exhaust gas measurement for the development of combustion engines and methods for exhaust gas aftertreatment, in particular for pure gas measurement after catalyst in:

- · Four-stroke gasoline and diesel engines,
- Catalysts for nitrogen oxide reduction.

Process measurement e.g. for monitoring, controlling and optimizing DeNOx SCR processes.

Sample components and measuring ranges (recommendations), stability data

Exhaust gas measurement for four-stroke gasoline and diesel engines

Sample component	Smallest range	Largest range
NO	0 to 100 ppm	0 to 5000 ppm
NO ₂	0 to 100 ppm	0 to 2500 ppm

Linearity error

≤1% of span.

≤ 2 % of measured value in accordance with EPA-specifications for automotive exhaust gas measurement

Repeatability

≤ 0.25 % of span

Zero drift

 \leq 1 ppm or \leq 1 % of span per 24 hours based on the smallest recommended measuring range (daily automatic zero point calibration recommended)

Span drift

≤ 1 % of measured value per week

Output signal fluctuation (2 σ)

 \leq 400 ppb or \leq 0.4 % of span at electronic T_{90} time = 5 s

Detection limit (4 σ)

 \leq 800 ppb or \leq 0.8 % of span at electronic T₉₀ time = 5 s

Diluted exhaust gas measurement for four-stroke gasoline and diesel engines, bag measurement

Sample component	Smallest range	Largest range
NO	0 to 10 ppm	0 to 500 ppm
NO ₂	0 to 10 ppm	0 to 500 ppm

Linearity error

 $\leq 1\%$ of span.

≤ 2 % of measured value in accordance with EPA-specifications for automotive exhaust gas measurement

Repeatability

≤ 0.25 % of span

Zero drift

 \leq 250 ppb or \leq 2 % of the span per 8 hours based on the smallest recommended measuring range (daily automatic zero point calibration recommended)

Span drift

≤ 1 % of measured value per week

Output signal fluctuation (2 σ)

NO: \leq 50 ppb or \leq 0.5 % of span,

 NO_2 : \leq 60 ppb or \leq 0.5 % of span at electronic T_{90} time = 15 s

Detection limit (4 σ)

NO: \leq 100 ppb or \leq 1 % of span,

 NO_2 : \leq 120 ppb or \leq 1 % of span at electronic T_{90} time = 15

Process measurement

Sample component	Smallest range	Largest range
NO	0 to 100 ppm	0 to 1000 ppm
NO ₂	0 to 100 ppm	0 to 500 ppm
NH ₃	0 to 100 ppm	0 to 500 ppm

Linearity error

≤ 1 % of measuring span

Repeatability

≤ 0.25 % of span

Zero point drift

 \leq 1 ppm or \leq 1 % of span per 24 hours based on the smallest recommended measuring range (daily automatic zero point calibration recommended)

Span drift

≤ 1 % of measured value per week

Output signal fluctuation (2 σ)

 \leq 150 ppb or \leq 0.15 % of span at electronic T₉₀ time = 30 s

Detection limit (4 σ)

 \leq 300 ppb or \leq 0.3 % of span at electronic

 T_{90} time = 30 s

Measuring ranges

Quantity

1 to 4 measuring ranges per sample component

Measuring range ratio

Max. 1:20; Measuring ranges freely adjustable within a range ratio of 1:20 relative to the factory-set reference measuring range;

Max. 1:50 for fixed measuring ranges in accordance with EPA-specifications for automotive exhaust gas measurement.

... Process photometer analyzer module Limas21 HW

Influences

Flow effect

Flow rate in the 20 to 90 l/h range: within the detection limit $\frac{1}{2}$

Associated gas effect/cross sensitivity

Analyzer calibration should be based on an analysis of the sample gas.

Selectivation measures to reduce associated gas effect: Internal electronic cross-sensitivity correction or carrier gas correction for a sample component by other sample components measured with the Limas21 HW.

Temperature effect

Ambient temperature in permissible range, Sample cell thermostat control to +82 °C

- · At zero point:
 - ≤ 2 % of span per 10 °C
- On the sensitivity:
 - ≤ 2 % of the measured value per 10 °C

Air pressure effect

- At the zero point: no influence effect
- On sensitivity with pressure correction using an integrated pressure sensor:
 - \leq 0.2 % of the measured value per 1 % of air pressure change

Power supply effect

DC 24 V ± 5 %: ≤ 0.2 % of span

Dynamic response

Warm-up time

Approx. 4 hour

T₉₀time

 $T_{90} \le 5$ sec for measurement cell length = 260 mm and sample gas flow = 60 l/h with non-linear filter (static/dynamic) = 15/1 s

Low-pass time constant adjustable from 0 to 30 s

Calibration

Zero-point calibration

With inert gas, e.g. nitrogen, or with ambient air that is free of the sample component.

End-point calibration

with gas-filled calibration cells (optional) or with test gas. It is recommended to verify the calibration cell set values once a year.

During calibration of a multi-component analyzer, possible cross-sensitivity and/or carrier gas corrections by internal or external measurement components are switched off. Therefore, corrected measurement components should be calibrated only using a test gas consisting of the measurement component and an inert gas such as nitrogen.

Materials

Sample cell

Tubing and window: silica glass, screw connection: PVDF, connectors: PTFE

Gas lines and connectors

Stainless steel 1.4571 (AISI 303), 1.4305 (AISI 316Ti)

Housing purge

Purge gas

Sample component-free air or nitrogen Purge gas flow rate $\leq 10 \text{ l/h}$

Sample gas inlet conditions

Limas21 HW – sample gas input conditions Sample gas composition Sulfur-free exhaust gas of combustors, SO_2 concentration < 25 ppm, H_2O < 20 vol.%, filtered with pore width $\leq 0.5 \ \mu m$

Temperature

Sample gas dew point ≤ 60 °C

Pressure

The analyzer is operated under atmospheric pressure; the sample gas outlet is open to atmosphere.

Internal pressure drop:	< 5 hPa at standard flow rate of 60 l/h.
Permissible absolute pressure	800 to 1250 hPa.
range:	Operation under lower absolute
	pressure (e.g. at altitudes above
	2000 m) on request.
Gauge pressure in the sample cell:	max. 500 hPa.
Flow rate	20 to 90 l/h

Gas connections

Refer to Limas21 on page 57.

Notes

- The Limas21 HW analyzer module can only be mounted in the 19" housing.
- SO₂ influences the NH₃ measured value. If the sample gas mixture contains SO₂, the requirement of internal corrections must be scrutinized. When ordering the average water vapor concentration has to be specified. The influence is corrected internally.

Sample conditioning system requirements

Sample gas feed-in

The various applications require the sample gas feed-in to the gas analyzer at temperatures of 150 to 190 $^{\circ}$ C.

It is imperative to eliminate condensation and sublimation since NO_2 and NH_3 are easy soluble in water and can lead to salification. It is also imperative to prevent condensation of potentially present low-boiling hydrocarbons.

Sample gas inlet temperature (on the process side) $150\ \text{to}\ 190\ ^{\circ}\text{C}$

Sample gas filter

When measuring NO and NO₂: sintered metal; during measurement of NH₃: ceramics; pore width $\leq 0.5 \mu m$

Materials in contact with gas-bearing components PTFE, PVDF or Silicosteel

Exhaust gas conditions

Outlet pressure = atmospheric pressure, no resistance in the gas outlet.

Installation note

Route the exhaust gas line declining to allow for condensate drain-off.

Sample cells for Limas21 UV, Limas21 HW

	Standard cell	Quartz cell	Safety cell
Application	Standard applications	Corrosive gases	Corrosive, toxic and flammable gases
Wavelength range	200 to 10000 nm	200 to 4000 nm	CaF2 window: 200 to 10000 nm
			SiO2 window: 200 to 4000 nm
Resistance ¹⁾			
Suitable for measuremen	t Non-corrosive gases	corrosive gases, e.g. wet Cl ₂ , wet HCl,	corrosive gases, e.g. dry HCl, dry
of		H ₂ SO ₄ , SO ₃ , ozone	COCl ₂ (< 50 ppm H ₂ O)
Not suitable for	Highly corrosive gases, e.g. gases	Fluorine compounds	Wet gases containing chlorine, H_2SO_4 ,
measurement of	containing chlorine, H_2SO_4 , SO_3 , fluorine		SO ₃ , fluorine compounds
	compounds		
Safety principle			
Toxic gases	Housing purge (≤ 20 l/h) with sample	Housing purge (\leq 20 l/h) with sample	Sample cell purge $^{2)}$ with N_2 or with sample
	component-free air or with N_2	component-free air	component-free air under negative
		or with N ₂	pressure and flow monitoring; additional
			monitoring for sample gas traces possible
Corrosive gases	PTFE gas lines, housing purge (≤ 20 l/h)	Housing purge (≤ 20 l/h) with sample	Sample cell purge ²⁾ with N ₂ or with sample
	with sample component-free air or with	component-free air	component-free air under gauge
	N ₂	or with N ₂	pressure ³⁾ with flow monitoring
Flammable gases ⁴⁾	Stainless steel gas lines, housing purge (≤ Housing purge (≤ 20 l/h) with N ₂	Cell purge ²⁾ with N ₂
	20 l/h) with N ₂		
Seal integrity	< 1 x 10 ⁻³ hPa l/s	< 1 x 10 ⁻⁶ hPa l/s	< 1 x 10 ⁻⁶ hPa l/s
Pressure rating			
Continuous	p _e < 500 hPa	p _e < 500 hPa	p _e < 500 hPa
Spike	_	p _{abs} < 300 kPa	p _{abs} < 500 kPa
Sample cell material			
Cell tube	Aluminum	Silica glass (SiO₂)	Stainless steel 1.4571 (SAE 316Ti)
Window	CaF ₂ , adhesive fastening	Silica glass	CaF ₂ or SiO ₂ , screwed connection
Seal	_	FFKM75	FFKM70
Connectors	Stainless steel 1.4571 (SAE 316Ti)	PFA	Stainless steel 1.4571 (SAE 316Ti)
Gas line materials	FPM or PTFE	PFA	Stainless steel 1.4571 (SAE 316Ti)
Gas connector materials	Stainless steel 1.4571 (SAE 316Ti)	PFA	Stainless steel 1.4571 (SAE 316Ti)
Sample gas connection	Connectors with 1/8 NPT female threads	Pipes 6/4 mm	Pipes with 4 mm outer diameter
design	For connection drawing, see Limas21 on	page 57.	

- 1) See also 'Sample gas input conditions' on pages Sample gas inlet conditions on page 11 and Sample gas inlet conditions on page 15.
- 2) purge curtain
- 3) $p_e = 7 \text{ to } 20 \text{ hPa}, 15 \text{ to } 20 \text{ l/h}$
- 4) The analyzer module is suited for the measurement of flammable gases and vapors under atmospheric conditions (p_{abs} ≤ 1.1 bar, oxygen content ≤ 21 vol.%). Temperature class: T4. The sample gas may not be explosive in standard operation; If the sample gas is explosive in the event of a sample gas supply failure, then only seldom and briefly (in accordance with Zone 2).

Pressure in the sample gas path in standard operation $p_e \le 100$ hPa; in case of a sample gas supply failure the pressure must not up-scale the maximum value $p_e = 500$ hPa. Before using the analyzer module, the corrosion resistance against the specific sample gas must be checked.

Oxygen analyzer module Magnos206

Measuring principle

Paramagnetic behavior of oxygen. Magnetomechanical oxygen analyzer.

Sample components and measurement ranges

Sample component

Oxygen (O₂)

Smallest measuring range

0 to 0.5 vol.% O₂

Measuring range quantity and measuring range limits

4 Measuring ranges

The measuring range limits are freely adjustable. At the factory, they are set to 0 to 10/15/25/100 vol.% $\rm O_2$ or in accordance with the order.

Largest measuring range

0 to 100 vol.% O₂.

Measuring ranges within ignition limits cannot be provided.

Measuring ranges with suppressed zero point

Measuring range suppression max. 1:100, for example 99 to 100 vol.% O_2 . Highly suppressed measuring ranges (\geq 95 to 100 vol.% O_2) and initial measuring ranges in the same analyzer should be avoided.

Pressure correction by means of pressure sensor required.

Stability

The following data only applies if all the influence variables (e.g. flow, temperature and air pressure) are constant.

Linearity error

 \leq 0.5 % of span, at least 0.005 vol.% O₂

Repeatability

 \leq 50 ppm O₂ (time base for gas exchange \geq 5 min)

Zero drift

 \leq 3 % of the span of the smallest measuring range (in accordance with order) per week, at least 300 ppm O₂ per week;

After longer transport/storage times, the drift can be higher in the first weeks.

Span drift

- ≤ 0.1 vol.% O₂ per week or ≤ 1 % of the measured value per week (not cumulative), whichever is smaller;
- ≤ 0.25 % of measured value per year, at least 0.05 vol.% O₂ per year

Output signal fluctuation (2 σ)

 \leq 25 ppm O₂ at electronic T₉₀ time (static/dynamic) = 3/0 s

Detection limit (4 σ)

 \leq 50 ppm O₂ at electronic T₉₀ time (static/dynamic) = 3/0 s

... Oxygen analyzer module Magnos206

Influences

Flow effect

≤ 0.1 vol.% O₂ in permissible range

Associated gas effect

Information on the influence of associated gases can be found in IEC 61207-3: 2002 'Gas analyzers – Expression of performance – Part 3: Paramagnetic oxygen analyzers'.

Temperature effect

Ambient temperature in permissible range.

- at zero point:
 - ≤ 0.02 vol. % O₂ per 10 °C
- on sensitivity:
 - ≤ 0.3 vol.% O₂ per 10 °C

Thermostat temperature = 64 °C

Air pressure effect

- on sensitivity without pressure correction:
 ≤ 1 % of the measured value per 1 % of air pressure change
- on sensitivity with pressure correction using integrated pressure sensor (option):
 ≤ 0.1 % of the measured value per 1 % air pressure change;

for highly suppressed measuring ranges: ≤ 0.01 % of measured value per 1 % air pressure change or ≤ 0.002 vol. % O_2 per 1 % air pressure change, whichever is greater.

Power supply effect

DC 24 V \pm 5 %: \leq 0.4 % of span

Position effect

Zero-point shift \leq 0.05 vol.% O₂ per 1° deviation from horizontal location.

Position has no effect on the hard-mounted unit.

Dynamic response

Warm-up time

< 1 hour

T₉₀time

 $T_{90} \le 3.5$ to 10 s at a sample gas flow = 90 l/h and electronic T_{90} time (static/dynamic) = 3/0 s, gas change from nitrogen to air (applies to an analyzer unit with 1 analyzer module)

Calibration

Zero-point calibration

with oxygen-free process gas or substitute gas

End-point calibration

With process gas with a known oxygen concentration or a substitute gas such as dried air.

Single-point calibration

For measuring ranges of 0 to 5 vol.% O_2 to 0 to 25 vol.% O_2 :

Zero point calibration with any oxygen concentration, e.g. with nitrogen or ambient air, processed through a cooler or H_2O absorber.

Pressure correction by means of pressure sensor is recommended for single-point calibration with air.

Depending on the measurement task involved, the zeroand end-points should be verified periodically (Recommendation: once a year).

Calibration of measuring ranges with suppressed zero point

Highly suppressed measuring ranges (≥95 to 100 vol.% O₂) should only be calibrated with test gases having concentrations in the selected measuring range.

Single-point calibration can also be done within a suppressed measurement range. The $\rm O_2$ concentration of the test gas must lie within the measuring range.

Materials

Analyzer

- Sample chamber (direct connection): stainless steel 1.4305, glass, platinum, rhodium, epoxy resin
- · Gaskets: FPM, optional: FFKM75

Sample gas inlet conditions

Magnos206 - sample gas input conditions

Temperature

- The sample gas dew point should be at least 5 °C below the temperature throughout the sample gas path. Otherwise a sample gas cooler or condensate trap is required.
- When there is a direct connection to the sample chamber, the maximum sample gas dew point is 55 °C.
- Water vapor content variations cause volume errors.

Designation of gas connections

The analyzer is operated under atmospheric pressure; the sample gas

Internal pressure drop:	< 5 hPa at standard flow rate of 60 l/h.
Permissible absolute pressure	800 to 1250 hPa.
range:	Operation under lower absolute
	pressure (e.g. at altitudes above
	2000 m) on request.
Operation under higher pressure:	A pressure sensor is required to
	compensate for pressure influences.
Absolute pressure ≤ 1250 hPa:	An optional internal pressure sensor
	can be connected to the sample gas
	path.
Absolute pressure ≥ 1250 hPa:	An external pressure sensor must be
	connected to the sample gas path. The
	pressure compensation must be
	calculated externally.
The analyzer module is function-te	sted for 5000 hPa internal pressure
without damage.	

without damage.	
Flow rate	30 to 90 l/h
	Abrupt changes in the sample gas flow
	rate should be avoided when using
	highly suppressed measurement
	ranges.

Corrosive gases

- · Consultation with ABB Analytical is required if the sample gas contains Cl₂, HCl, HF or other corrosive components.
- If the sample gas contains NH₃, FFKM75 gaskets must be used; in this case, the pneumatic module cannot be connected to the analyzer module.
- The pressure sensor must not be connected to the sample gas path during measurement of corrosive gases.

Flammable gases

- The analyzer module is suited for the measurement of flammable gases and vapors under atmospheric conditions ($p_{abs} \le 1.1$ bar, oxygen content ≤ 21 vol.%). Temperature class: T4.
- The sample gas may not be explosive in standard operation; If the sample gas is explosive in the event of a sample gas supply failure, then only seldom and briefly (in accordance with Zone 2).
- Pressure in the sample gas path in standard operation $p_e \le 100 \text{ hPa}$; in case of a sample gas supply failure the pressure must not up-scale the maximum value $p_e = 500 \text{ hPa}.$
- Before using the analyzer module, the corrosion resistance against the specific sample gas must be checked.
- Housing purge with nitrogen should be provided during measurement of flammable gases and vapors. Flame barriers can be used as an option (except for the 'safety concept' version, see Version in category II 3G for measurement of flammable and nonflammable gases ('Safety Concept') on page 69). Pressure drop at the flame barriers approx. 40 hPa for a sample gas flow rate of 50 l/h. Material of the flame barriers:

stainless steel 1.4571.

The pressure sensor must not be connected to the sample gas path.

Version in category 3G see Version in category II 3G for measurement of non-flammable gases on page 72

Gas connections

Refer to Magnos28 gas connections on page 60.

Magnos28 Oxygen analyzer module

Measuring principle

Paramagnetic behavior of oxygen. Magnetomechanical oxygen analyzer.

Sample components and measurement ranges

Sample component

Oxygen (O₂)

Smallest measuring range

0 to 0.5 vol.% O₂

Measuring range quantity and measuring range limits

4 Measuring ranges

The measuring range limits are freely adjustable. At the factory, they are set to 0 to 10/15/25/100 vol.% $\rm O_2$ or in accordance with the order.

Largest measuring range

0 to 100 vol.% O₂.

Measuring ranges within ignition limits may not be provided.

Measuring ranges with suppressed zero point

Measuring range suppression max. 1:200, e.g. 99.5 to 100 vol.-% O_2 .

Pressure correction by means of pressure sensor required.

The pressure sensor is equipped by the manufacturer when the analyzer has been ordered with a suppressed measurement range.

Stability

The following data only applies if all the influence variables (e.g. flow, temperature and air pressure) are constant.

Linearity error

 \leq 0.5 % of the span or 0.005 vol.% O_2 , the greater value applies

Repeatability

≤ 50 ppm O₂

Zero point drift

 \leq 3 % of span of the smallest measuring range (in accordance with order) per week, or 0.03 vol.% O₂ per week, whichever value is greater.

The value may be elevated during first commissioning or after a longer service life.

Span drift

- ≤ 0.1 vol.-% O₂ per week ≤ 1 % of the measured value per week (not cumulative), whichever value is smaller;
- ≤ 0.15 % of the measured value per three months or 0.03 vol.-% O₂ per three months, the larger value applies

Output signal fluctuation (2 σ)

 \leq 25 ppm O₂ at electronic T₉₀ time (static/dynamic) = 3/0 sec

Detection limit (4 σ)

 \leq 50 ppm O₂ at electronic T₉₀ time (static/dynamic) = 3/0 sec

Influences

Flow effect

- Sample gas N₂:
 - ≤ 0.1 vol.% O₂ in permissible flow rate range;
- · Sample gas air:
 - \leq 0.1 vol.% O₂ at a flow change of 10 l/h

Associated gas effect

Information on the influence of associated gases can be found in IEC 61207-3:2002 'Gas analyzers – Expression of performance – Part 3: Paramagnetic oxygen analyzers'.

Temperature effect

Average temperature effect in permissible ambient temperature range:

- · at zero point:
 - ≤ 0.02 vol.% O₂ per 10 °C
- · On sensitivity:
 - ≤ 0.3 % of the measured value
- For highly suppressed measuring ranges (when factory configured):

 \leq 0.01 vol.% / 10 °C in the same measuring range Thermostat temperature = 60 °C (140 °F)

For highly suppressed measuring ranges (\geq 99 to 100 vol.-% O₂) and very small measuring ranges (\leq 0 to 1 vol.% O₂) greater temperature fluctuations (\geq 5 °C) at the installation site should be avoided.

Air pressure effect

- On sensitivity without pressure correction:
 ≤ 1 % of the measured value per 1 % of air pressure change
- On sensitivity with pressure correction using integrated pressure sensor (optional):
 ≤ 0.1 % of the measured value per 1 % air pressure change;

for highly suppressed measuring ranges: $\le 0.01\,\%$ of measured value per 1 % air pressure change or ≤ 0.002 vol.-% O_2 per 1 % air pressure change, whichever is greater.

Power supply effect

DC 24 V ± 5 %: within detection limit

Position effect

Zero-point shift ≤ 0.05 vol. % O₂ per 1° deviation from horizontal location

Position has no effect on the hard-mounted unit.

Dynamic response

Warm-up time

< 5 hours

The value may be elevated during first commissioning or after a longer service life.

T₉₀ time

 $T_{90} \le 3$ s at a sample gas flow = 90 l/h and electronic T_{90} time (static/dynamic) = 3/0 s, gas change from nitrogen to air (applies to an analyzer unit with 1 analyzer module)

Calibration

Zero-point calibration

With oxygen-free process gas or substitute gas

End-point calibration

With process gas with a known oxygen concentration or a substitute gas such as dried air.

Single-point calibration

For measuring ranges of 0 to 5 vol.% O_2 to 0 to 25 vol.% O_2 :

Zero point calibration with any oxygen concentration, e.g. with nitrogen or ambient air, processed through a cooler or H_2O absorber.

Pressure correction by means of pressure sensor is recommended for single-point calibration with air.

Depending on the measurement task involved, the zeroand end-points should be verified periodically (Recommendation: once a year).

Calibration of measurement ranges with suppressed zeropoint

Highly suppressed measuring ranges

(\geq 95 to 100 vol.% O₂) should be calibrated for the best possible accuracy with N₂ for the zero point and 100% O₂ for the end point.

Single-point calibration can also be done within a suppressed measurement range. The O_2 concentration of the test gas must lie within the measuring range.

... Magnos28 Oxygen analyzer module

Materials

Analyzer

- Sample chamber: stainless steel 1.4305, nickel alloy, glass, PtNi, silicon, gold, PTFE;
- Gaskets: FPM, optional: FFKM75

Sample gas inlet conditions

Magnos28 - sample gas input conditions

Temperature

- The sample gas dew point should be at least 5 °C below the temperature throughout the sample gas path. Otherwise a sample gas cooler or condensate trap is required.
- When there is a direct connection to the sample chamber, the maximum sample gas dew point is 55 °C.
- Water vapor content variations cause volume errors.

Designation of gas connections

The analyzer is operated under atmospheric pressure; the sample gas outlet is open to atmosphere.

Internal pressure drop:	< 5 hPa at standard flow rate of 60 l/h.
Permissible absolute pressure	800 to 1600 hPa.
range:	Operation under lower absolute
	pressure (e.g. at altitudes above
	2000 m) on request.
Operation under higher pressure:	A pressure sensor is required to
	compensate for pressure influences.
Absolute pressure ≤ 1250 hPa:	An optional internal pressure sensor
	can be connected to the sample gas
	path.
Absolute pressure ≥ 1250 hPa:	An external pressure sensor must be
	connected to the sample gas path. The
	pressure compensation must be
	calculated externally.
The analyzer module is function to	estad for E000 hBa internal proceure

	pressure compensation must be	
	calculated externally.	
The analyzer module is	ne analyzer module is function-tested for 5000 hPa internal pressure	
without damage.		
Flow rate	30 to 90 l/h;	
	measuring ranges ≤ 0 to 3 vol % O ₂ :	
	60l/h	
	For highly suppressed measuring	
	ranges and measuring ranges of	
	\leq 0 to 3 vol % O ₂ , changes of the	
	sample gas flow should be avoided.	

Corrosive gases

- Consultation with ABB Analytical is required if the sample gas contains Cl₂, HCl, HF or other corrosive components.
- If the sample gas contains NH₃, FFKM75 gaskets must be used; in this case, the pneumatic module cannot be connected to the analyzer module.
- The pressure sensor must not be connected to the sample gas path during measurement of corrosive gases.

Flammable gases

- The analyzer module is suited for the measurement of flammable gases and vapors up to a sample gas pressure of 1.2 bar (absolute) in GP and Zone 2 environments.
- For use in Zone 2, suitability is limited to measuring media under atmospheric conditions (p_{abs} ≤ 1.1 bar, oxygen content ≤ 21 Vol. %). Temperature class: T4.
- The sample gas may not be explosive in standard operation; If the sample gas is explosive in the event of a sample gas supply failure, then only seldom and briefly (in accordance with Zone 2).
- Pressure in the sample gas path in standard operation $p_e \le 100$ hPa; in case of a sample gas supply failure the pressure must not up-scale the maximum value $p_e = 500$ hPa.
- Before using the analyzer module, the corrosion resistance against the specific sample gas must be checked.
- Housing purge with nitrogen should be provided during measurement of flammable gases and vapors.
 Flame barriers can be used as an option. Pressure drop at the flame barriers approx. 40 hPa for a sample gas flow rate of 50 l/h.
 - Material of the flame barriers: stainless steel 1.4571.
- The pressure sensor must not be connected to the sample gas path.

Gas connections

Refer to Magnos28 gas connections on page 60.

Oxygen analyzer module Magnos27

Measuring principle

Paramagnetic behavior of oxygen Heavy-duty thermomagnetic analyzer

Sample components and measurement ranges

Sample component

Oxygen (O_2) in flue gas or in nitrogen (N_2)

Smallest measuring range

0 to 3 vol.% O₂

Measuring range quantity and measuring range limits

1 to 4 measuring ranges

Ranges are factory-set in accordance with order.

Largest measuring range

0 to 100 vol.% O₂

Measuring ranges within ignition limits cannot be provided.

Stability

The following data only applies if all the influence variables (e.g. flow, temperature and air pressure) are constant.

Linearity error

≤2% of span

Repeatability

≤1% of measuring span

Zero point drift

≤1% of span per week

Span drift

≤ 2 % of measured value per week

Output signal fluctuation (2 σ)

 ≤ 0.5 % of smallest measuring range span at electronic T_{90} time = 0 s

Detection limit (4 σ)

 \leq 1 % of the measuring span of the smallest measuring range at electronic T $_{90}$ time = 0 s

Influences

Flow effect

 \leq 1 % of span at a flow change of ±10 l/h. At an identical flow rate for test and sample gases, the flow rate effect is automatically compensated.

Associated gas effect

Magnos27 calibration applies only to the sample gas shown on the identification plate (= sample component + associated gas).

Temperature effect

Ambient temperature in permissible range

- At zero point:
 - ≤ 2 % of span per 10 °C
- On the sensitivity:
 - \leq 0.5 % of the measured value per 10 °C

based on temperature at the time of calibration Thermostat temperature = 63 °C.

Air pressure effect

- · at zero point:
 - $< 0.05 \text{ vol. } \% \text{ O}_2 \text{ per 1 } \% \text{ air pressure}$
- On sensitivity without pressure correction:
 ≤ 1.5 % of the measured value per 1 % of air pressure change
- On sensitivity with pressure correction using an integrated pressure sensor (option):
 - \leq 0.25 % of the measured value per 1 % of air pressure change

Option: calibration for operating altitude over 2000 m

Power supply effect

DC 24 V ± 5 %: ≤ 0.2 % of span

Position effect

Approx. 3 % of the span of the smallest measuring range per 1° deviation from horizontal orientation.

Position has no effect on the hard-mounted unit.

Dynamic response

Warm-up time

2 to 4 h

T₉₀ time

 T_{90} = 10 to 22 s, depending on sample gas flow and on the sample chamber connection (see **Magnos27 gas connections** on page 61; applies to a gas analyzer only with Magnos27)

... Oxygen analyzer module Magnos27

Calibration

Zero-point calibration

With oxygen-free process gas or substitute gas

End-point calibration

With process gas having a known oxygen concentration or with substitute gas

Materials

Analyzer

Stainless steel 1.4580 and 1.4305, glass

Gas lines and connectors

Stainless steel 1.4571 and 1.4305, PVC-C, FPM

Sample gas inlet conditions

Magnos27 - sample gas input conditions

Temperature

5 to 50 °C

- The sample gas dew point should be at least 5 °C below the temperature throughout the sample gas path. Otherwise a sample gas cooler or condensate trap is required.
- When there is a direct connection to the sample chamber, the maximum sample gas dew point is 55 °C.
- Water vapor content variations cause volume errors.

Designation of gas connections

The analyzer is operated under atmospheric pressure; the sample gas outlet is open to atmosphere.

Flow rate	20 to 90 l/h
chamber:	
Gauge pressure in the measuring	max. 100 hPa.
	2000 m) on request.
	pressure (e.g. at altitudes above
range:	Operation under lower absolute
Permissible absolute pressure	800 to 1250 hPa.
Internal pressure drop:	< 5 hPa at standard flow rate of 60 l/h.
outlet is open to atmosphere.	

Flammable gases

Measurement of flammable gases is not permitted.

Gas connections

Refer to Magnos27 gas connections on page 61.

Trace oxygen analyzer module ZO23

Measuring principle

Potentiometric measurement

Zirconium dioxide cell for determination of the oxygen concentration in accordance with Nernst's equation; reference gas: ambient air.

The analyzer module is used for the continuous measurement of oxygen in pure gases (N_2 , CO_2 , Ar). The measuring cell is catalytically inactivated to the extent that flammable carrier components in stoichiometric concentrations only negligibly reduce the oxygen value.

Sample components and measurement ranges

Sample component

Oxygen (O₂)

Measuring ranges and measuring range limits

4 measurement ranges

The limits of the measuring ranges are freely adjustable within the range of 0 to 1 ppm to 0 to 250,000 ppm O_2 ; they are factory-set to 0 to 1/10/100/1000 ppm O_2 . The following measurement data refer to a span of 100 ppm O_2 with a regulated flow rate of 8 ±0.2 l/h.

Stability

The following data only applies if all the influence variables (e.g. flow, temperature and air pressure) are constant.

Linearity

Owing to the measurement principle, zirconium dioxide cells are base linear.

Repeatability

< 1 % of the measuring span or 100 ppb O_2 (greater value applies)

Zero point drift

< 1 % of the measuring range per week or 250 ppb O_2 (greater value applies)

The zero point (reference point) is displayed if ambient air is present on the sample gas side.

The value for air of 20.6 vol. % $\rm O_2$ (at 25 °C and 50 % relative air humidity) may deviate through aging of the cell.

Span drift

For pure gas measurements in N_2 , CO_2 and Ar: < 1 % of the measuring range per week or 250 ppb O_2 (greater value applies)

Depends on possible interfering components (catalyst poisons) in the sample gas and the aging of the cell.

Output signal fluctuation (2 σ)

 $< \pm 0.5$ % of the measured value or 50 ppb O_2 (whichever is greater)

Detection limit (4 σ)

 $< \pm 1$ % of the measured value or 100 ppb O_2 (whichever is greater)

_

... Trace oxygen analyzer module ZO23

Influences

Flow effect

 \leq 300 ppbv O₂ in the range from 5 to 10 l/h

Associated gas effect

Inert gases (Ar, CO_2 , N_2) have no effect. Flammable gases (CO, H_2 , CH_4) in stoichiometric concentrations to the oxygen content: conversion $O_2 < 20$ % of the stoichiometric conversion. If higher concentrations of flammable gases are present, higher O_2 conversions must be expected. The concentration of flammable gases in the sample gas must not exceed 100 ppm.

Temperature effect

The effect of the ambient temperature in the permissible range of 5 to 45 °C is < 2 % of the measured value or 50 ppb O_2 per 10 °C change in the ambient temperature, whichever value is greater

Air pressure effect

No effect through a change in air pressure; sample gas must flow out of the outlet without back pressure.

Power supply effect

DC 24 V ± 5 %: no effect

Position effect

No position effect for permanently installed instruments

Dynamic response

Warm-up time

- The operating temperature of the cell is reached after approx. 15 minutes. Offset calibration with reference gas (ambient air) after 2 hours flow.
- The measurement is ready-to-run after valves and lines have been purged with sample gas. Typical purging time for valves and lines: approx. 2 to 5 hours.

$T_{90} time$

 T_{90} < 60 sec for the alternation of 2 test gases in the measuring range 10 ppm with a sample gas flow rate = 8 l/h and electronic T_{90} time = 3 sec

Calibration

Offset calibration

The reference value for ambient air is calibrated at $20.6 \text{ vol.} \% \text{ O}_2$ by means of ambient air on the sample gas side.

End-point calibration

By means of test gas O_2 in N_2 (or in CO_2 or Ar); O_2 concentration in the measuring range, e.g. 10 ppm O_2

Function test

Extended response time or reduced sensitivity are dimensions for the correct functioning of the measuring cell. The function test can be carried out without any additional test gases by feeding the sample gas with constant concentration.

Based on the progression of the test, it can be assessed whether the reaction time of the sensor lies within a specified tolerance. The function test is started manually and lasts approx. 15 minutes.

Additional function block configuration is required for the cyclic scan.

Materials

Analyzer

- Zirconium dioxide cell: ZrO₂, electrodes containing platinum
- Dust filter (optional): PP
- Flow sensor (optional): on semiconductor basis, nickel-plated brass

Gas lines and connectors

- Gas lines: stainless steel 1.4571, silicon hose and FPM-hose in the gas outlet;
- Gas connectors: stainless steel, 1.4401/1.4305

Sample gas inlet conditions

Note

The analyzer module must not be used for measurement of ignitable gas/air or gas/oxygen mixtures.

ZO23 – sample gas input conditions	
Temperature	5 to 50 °C
Inlet pressure	p _e ≤ 70 hPa
Flow rate	4 to 20 l/h

- The sample gas flow rate must be kept constant within the specified range at ±0.2 l/h.
- The sample gas must be taken unpressurized from a bypass. If the sample gas flow is too low, contamination effects from the gas lines (leaks, permeability, desorption) will lead to inaccuracies in the measurement result.

If the sample gas flow is too high, asymmetrical cooling of the sensor may cause measurement errors. This can also cause quicker aging or damage to the measuring cell.

Note

The temperature, pressure and flow of the sample gas must be kept constant, to such an extent that the influence of variations on the measuring accuracy is acceptable, refer to **Influences** on page 26.

Corrosive gases

The presence of corrosive gases and catalyst poisons, such as halogens, gases containing sulfur and heavy-metal dust, leads to quicker aging and / or the destruction of the $\rm ZrO_2$ cell.

Flammable gases

The analyzer module is suitable for measuring flammable gases in a non-explosive environment. The concentration of flammable gases in the sample gas must not exceed 100 ppm.

Purge gas

If case purging is selected, purging may only be carried out with air (not with nitrogen), since the ambient air is used as a reference gas.

Note

The trace oxygen analyzer module cannot be connected to the pneumatics module.

Gas connections

Refer to **ZO23 gas connections** on page 62.

Heat conductivity analyzer module Caldos25

Measuring principle

Difference in thermal conductivity of various gases

Highly corrosion-resistant heat conductivity analyzer, measuring cell embedded in glass.

Sample components and measurement ranges

The Caldos25 is specifically designed for measurements of corrosive gas components.

Sample components and smallest measurement ranges (examples)		
Sample component and Smallest measurement Reference gas		
associated gas	range	
H ₂ in N ₂ or air	0 to 0.5 Vol%	Air (sealed)
SO ₂ in N ₂ or air	0 to 1.5 Vol%	Air (sealed)
H ₂ in Cl ₂	0 to 0.5 Vol%	Flowing

Measuring range quantity and measuring range limits

1 to 4 measuring ranges per sample component The measuring ranges are factory-set in accordance with the customer order.

Largest measuring range

0 to 100 vol. % or 0 vol. % to saturation Measurement ranges within ignition limits cannot be provided.

Measuring range switching ratio

≤ 1:20

Measuring ranges with suppressed zero point

Span at least 2 vol.%, depending on application

Stability

The following data only applies if all the influence variables (e.g. flow, temperature and air pressure) are constant.

Linearity error

≤ 2 % of span

Repeatability

≤ 1 % of measuring span

Zero point drift

≤1% of span per week

Span drift

≤ 1 % of measured value per week

Output signal fluctuation (2 σ)

 \leq 0.5 % of smallest measurement range span at electronic $T_{\rm 90}$ time = 0 sec

Detection limit (4 σ)

 \leq 1 % of the measuring span of the smallest measuring range at electronic T $_{90}$ time = 0 s

Influences

Flow effect

 \leq 1 to 5 % of span at a flow change of ±10 l/h. At an identical flow rate for test and sample gases, the flow rate effect is automatically compensated.

Associated gas effect

Analyzer calibration should be based on an analysis of the sample gas.

Measurement results can be greatly distorted by interfering components in complex (non-binary) gas mixtures.

Temperature effect

Ambient temperature in permissible range

In any point of the measuring range:
 ≤ 1 % of span per 10 °C, based on the temperature at the time of calibration

Thermostat temperature = 60 °C (140 °F)

Air pressure effect

No effect in permissible operating condition range

Power supply effect

DC 24 V \pm 5 %: \leq 0.2 % of span

Position effect

< 1 % of span up to 10° deviation from horizontal orientation

Dynamic response

Warm-up time

1.5 hours

T_{90} time

 T_{90} typical = 10 to 20 s; optional: T_{90} < 6 s (applies to an analyzer unit with 1 analyzer module)

Calibration

Zero-point calibration

With sample component-free process gas or substitute gas

End-point calibration

With process gas having a known sample gas concentration or with substitute gas

_

... Heat conductivity analyzer module Caldos25

Materials

Analyzer

Stainless steel 1.4305 (SAE 303), glass

Gas lines and connectors

- With connected reference gas: stainless steel 1.4305;
- With flowing reference gas: PVC-C, FPM gaskets;
- For corrosive measuring gas: PVC-C, FPM gaskets;

Contains the NH_3 sample gas, therefore FFKM gaskets are used

Sample gas inlet conditions

Caldos25 - sample gas input conditions

Temperature

5 to 50 °C

- The sample gas dew point should be at least 5 °C below the temperature throughout the sample gas path. Otherwise a sample gas cooler or condensate trap is required.
- Water vapor content variations cause volume errors.

Designation of gas connections

The analyzer is operated under atmospheric pressure; the sample gas outlet is open to atmosphere.

Flow rate	Standard 10 to 90 l/h, Max. 90 to 200 l/h for option $T_{90} < 6$ s
chamber:	
Gauge pressure in the measuring	max. 100 hPa.
	2000 m) on request.
	pressure (e.g. at altitudes above
range:	Operation under lower absolute
Permissible absolute pressure	800 to 1250 hPa.
Internal pressure drop:	< 5 hPa at standard flow rate of 60 l/h.
Internal pressure drop:	< 5 hPa at standard flow rate of 60 le

Flowing reference gas

Gas inlet conditions same as sample gas

Flammable gases

- The analyzer module is suited for the measurement of flammable gases and vapors under atmospheric conditions (p_{abs} ≤ 1.1 bar, oxygen content ≤ 21 vol.%).
 Temperature class: T4.
- The sample gas may not be explosive in standard operation; If the sample gas is explosive in the event of a sample gas supply failure, then only seldom and briefly (in accordance with Zone 2).
- Pressure in the sample gas path in standard operation $p_e \le 100$ hPa; in case of a sample gas supply failure the pressure must not up-scale the maximum value $p_e = 500$ hPa.
- Before using the analyzer module, the corrosion resistance against the specific sample gas must be checked.
- Housing purge with nitrogen should be provided during measurement of flammable gases and vapors. Flame barriers can be used as an option (except for the 'safety concept' version, see Version in category II 3G for measurement of flammable and nonflammable gases ('Safety Concept') on page 69). Pressure drop at the flame barriers approx. 40 hPa for a sample gas flow rate of 50 I/h. Material of the flame barriers:

stainless steel 1.4571.

The pressure sensor must not be connected to the sample gas path.

 Version in category 3G see Version in category II 3G for measurement of non-flammable gases on page 72

Gas connections

Refer to Caldos25 gas connections on page 63.

Heat conductivity analyzer module Caldos27

Measuring principle

Difference in thermal conductivity of various gases

Micromechanical silicon sensor with especially short T₉₀ time

Sample components and measurement ranges

Sample components and smallest possible measurement ranges (examples)

Sample component	Measuring ranges		Standard gas*	
and associated gas	Class 1	Class 2		for calibration
Ar in O ₂	0 to 20	0 to 2	vol.%	Air, N ₂ , O ₂
H ₂ in Ar	0 to 2.5	0 to 0.25	vol.%	Air, N ₂ , Ar
H ₂ in N ₂ or air	0 to 3	0 to 0.3	vol.%	Air, N ₂
H ₂ in stack gas	0 to 5	0 to 0.5	vol.%	Air, N ₂
CH ₄ in N ₂	0 to 20	0 to 2	vol.%	Air, N ₂
CH ₄ in air	0 to 4	0 to 2	vol.%	Air, N ₂
CO ₂ in N ₂ or air	0 to 30	0 to 3	vol.%	Air, N ₂
Ar in N ₂	75 to 100	97.5 to 100	vol.%	Air, N ₂ , Ar
H ₂ in N ₂	90 to 100	97 to 100	vol.%	N ₂ , H ₂
		99 to 100**	vol.%	N ₂ , H ₂
CH ₄ in N ₂	90 to 100	99 to 100	vol.%	N ₂ , CH ₄
He in N ₂	90 to 100	97 to 100	vol.%	He

^{*} only for measuring ranges ≥ Class 1

Sample components and measurement ranges for monitoring hydrogencooled turbo generators

Sample component	Measurement range
and associated gas	
CO ₂ in air	0 to 100 Vol%
H ₂ in CO ₂	100 to 0 Vol%
H ₂ in air	100 to 80/90 vol.%

Other sample components on request.

Measuring range quantity and measuring range limits

1 to 4 measuring ranges per sample component Range limits are freely adjustable. They are factorycalibrated for the largest possible measurement range.

Largest measuring range

0 to 100 vol. % or 0 vol. % to saturation, depending on measurement task.

Measurement ranges within ignition limits cannot be provided.

Measuring range switching ratio

≤ 1:20

Measuring ranges with suppressed zero point

See the table above for spans

Stability

These data apply only to measuring ranges ≥ class 2

Linearity error

≤2% of span

Repeatability

≤ 1 % of measuring span

Zero point drift

≤ 2 % of smallest possible measuring range per week

Span drift

 $\leq 0.5~\%$ of the smallest provided measuring range per week

Output signal fluctuation (2 σ)

 $\leq 0.5\,\%$ of smallest measuring range span at electronic T_{90} time = 0 s

Detection limit (4 σ)

 \leq 1 % of the measuring span of the smallest measuring range at electronic T_{90} time = 0 s

^{**} Daily zero point check required

... Heat conductivity analyzer module Caldos27

Influences

Flow effect

 \leq 0.5 % of span at a flow change of ± 10 l/h. At an identical flow rate for test and sample gases, the flow rate effect is automatically compensated.

Associated gas effect

Analyzer calibration should be based on an analysis of the sample gas.

Temperature effect

Ambient temperature in permissible range.

In any point of the measuring range:

 \leq 0.5 % of span per 10 °C, based on the temperature at the time of calibration

Thermostat temperature = 60 °C (140 °F)

Air pressure effect

 \leq 0.25 % of span per 10 hPa for the smallest possible measuring ranges given; for larger spans, the effect is correspondingly lower. Option: calibration for operating altitude over 2000 m

Power supply effect

DC 24 V \pm 5 %: \leq 0.2 % of span

Position effect

< 1 % of span up to 30° deviation from horizontal orientation

Dynamic response

Warm-up time

Approx. 30/60 minutes for class 1/2 measuring ranges

T₉₀time

 $T_{90} \le 2$ s for direct sample chamber connection and sample gas flow = 60 l/h (applies to an analyzer unit with 1 analyzer module)

Calibration

Zero-point calibration

With test gas, sample component-free process gas or substitute gas

End-point calibration

With test gas, process gas having a known sample gas concentration or substitute gas

Simplified calibration with standard gas

For measurement ranges ≥ class 1, a single-point calibration can be performed with standard gas, since the zero- and end-points will not drift independently due to the sensor principle employed.

This technique leaves out safety- related measurements. Depending on the measurement task involved, the zero-and end-points should be verified periodically (Recommendation: once a year).

Materials

Analyzer

• Sample chamber: stainless steel, 1.4305

Sensor: gold, silicon oxi-nitride

• Gasket: FFKM75 (Perfluoro rubber)

Sample gas inlet conditions

Note

The analyzer module must not be used for measurement of ignitable gas/air or gas/oxygen mixtures.

Caldos27 - sample gas input conditions

Temperature

5 to 50 °C

- The sample gas dew point should be at least 5 °C below the temperature throughout the sample gas path. Otherwise a sample gas cooler or condensate trap is required.
- · Water vapor content variations cause volume errors.

Designation of gas connections

The analyzer is operated under atmospheric pressure; the sample gas outlet is open to atmosphere.

< 5 hPa at standard flow rate of 60 l/h.
800 to 1250 hPa.
Operation under lower absolute
pressure (e.g. at altitudes above
2000 m) on request.
max. 100 hPa.
Typically 10 to 90 l/h,
minimum 1 l/h

Corrosive gases

- Consultation with ABB Analytical is required if the sample gas contains Cl₂, HCl, HF, SO₂, NH₃, H₂S or other corrosive components.
- If the sample gas contains NH₃, flexible FPM tubes may not be used; flexible FFKM tubes must be used instead.

In this case, the pneumatics module cannot be connected to the analyzer module.

Flammable gases

- The analyzer module is suited for the measurement of flammable gases and vapors under atmospheric conditions (p_{abs} ≤ 1.1 bar, oxygen content ≤ 21 vol.%). Temperature class: T4.
- The sample gas may not be explosive in standard operation; If the sample gas is explosive in the event of a sample gas supply failure, then only seldom and briefly (in accordance with Zone 2).
- Pressure in the sample gas path in standard operation $p_e \le 100$ hPa; in case of a sample gas supply failure the pressure must not up-scale the maximum value $p_e = 500$ hPa.
- Before using the analyzer module, the corrosion resistance against the specific sample gas must be checked.
- Housing purge with nitrogen should be provided during measurement of flammable gases and vapors. Flame barriers can be used as an option (except for the 'safety concept' version, see Version in category II 3G for measurement of flammable and nonflammable gases ('Safety Concept') on page 69). Pressure drop at the flame barriers approx. 40 hPa for a sample gas flow rate of 50 l/h. Material of the flame barriers:

stainless steel 1.4571.

The pressure sensor must not be connected to the sample gas path.

 Version in category 3G see Version in category II 3G for measurement of non-flammable gases on page 72

Gas connections

Refer to Caldos27 gas connections on page 64.

FID analyzer module Fidas24

Measuring principle

Flame-ionization detector

The analyzer module complies with the requirements for measuring instruments with flame ionization detection according to EN 12619.

Sample components and measurement ranges

Sample components

Hydrocarbons.

The concentration of the gas components in the sample gas path must not exceed the temperature-dependent LEL. The analyzer temperature is 180 °C.

Number of sample components

4 sample components

Smallest measuring range

0 to 5 to 0 to 1500 mg org. C/m³ or 0 to 10 to 0 to 3000 ppm C1

Largest measuring range

0 to 80 g org. C/m³ or 0 to 15 vol. % C1 Other measuring ranges on request.

Measuring range quantity and measuring range limits

1 to 4 measuring ranges

The measuring ranges are factory-set per customer order. Smallest to largest measuring range ratio 1:300 to 1:1500 , depending on the configuration.

Stability

The following data only applies if all the influence variables (e.g. flow, temperature and air pressure) are constant.

They apply to measuring ranges \geq 50 mg org. C/m³; for smaller measuring ranges these only apply if they are factory-set in accordance with the order.

Linearity error

 \leq 2 % of span to 5000 mg org. C/m³, this value applies in one (calibrated) measuring range

Repeatability

≤ 0.5 % of measurement range

Zero drift

 \leq 0.5 mg org. C/m³ per week

Span drift

≤ 0.5 mg org. C/m³ per week

Output fluctuation at zero point (2 σ)

 \leq 0.5 % of span at electronic T₉₀-time = 20 s

Detection limit (4 σ)

 \leq 1 % of span at electronic T₉₀ time = 20 s

Influences

Oxygen dependence

 \leq 2 % of measured value for 0 to 21 vol. % O_2 or \leq 0.3 mg org. C/m³, the larger value applies in each case

Temperature effect

Ambient temperature in permissible range.

At zero point and on sensitivity:
 ≤ 2 % of the measured value per 10 °C or ≤ 300 ppb C1 per 10 °C

Power supply effect

- DC 24 V \pm 5 %: \leq 0.2 % of span or
- AC 230 V ± 10 %: ≤ 0.2 % of span or
- AC 115 V \pm 10 %: \leq 0.2 % of span

Dynamic response

Warm-up time

≤ 2 hours

$T_{90} time \\$

 T_{90} < 1.5 s at sample gas flow = 80 l/h and electronic T_{90} time = 1 sec

Calibration

Zero-point calibration

With synthetic air or catalytically purified air or nitrogen, depending on the application.

Sensitivity calibration

With propane or another hydrocarbon (substitute gas) in air or nitrogen, depending on the application.

Wetted materials

Analyzer, gas lines and connectors

Stainless steel 1.4305 and 1.4571, FPM, PTFE, FFKM

Sample gas inlet conditions

Fidas24 – sample gas input conditions	
Temperature	≤ Thermostat temperature (thermostat
	temperature for sample gas path, detector and
	air injector ≤ 200 °C, factory-set at180 °C)
Inlet pressure	p _{abs} = 800 to 1100 hPa
Flow rate	approx. 80 to 100 l/h at atmospheric pressure
	(1000 hPa)
Humidity	≤ 40 % H ₂ O

Note

The temperature, pressure and flow of the sample gas must be kept constant, to such an extent that the influence of variations on the measuring accuracy is acceptable. Refer to **Stability** on page 34.

Further properties of the sample gas

The sample gas must not be explosive at any time.

The analyzer module must not be used for the measurement of gases containing organometallic compounds, e.g. leadcontaining fuel additives or silicone oils.

Flammable gases

The gas analyzer may be used for the measurement of flammable gases provided that the flammable portion does not up-scale 15 Vol.-% $\rm CH_4$ or does not up-scale C1 equivalents.

Requirements for the sample gas outlet

The outlet pressure must be the same as the atmospheric pressure.

_

... FID analyzer module Fidas24

Operational gases

Instrument air

Parameter	Value/Description		
Quality	According to ISO 8573-1 Class 2		
	Particle size: max. 1 μm,		
	Particle density: max. 1 mg/m³,		
	Oil content: max. 0.1 mg/m³,		
	Dew point: At least 10 °C below the lowest		
	expected ambient temperature		
Inlet pressure p _e	4000 hPa, ±500 hPa		
Flow rate	Typically approx. 1800 l/h (1200 l/h for the air		
	jet injector and approx. 600 l/h for the housing		
	purge),		
	max. approx. 2200 l/h (1500 l/h + 700 l/h)		

Combustion air

Parameter	Value/Description
Quality	Synthetic air or catalytically purified air
	• Organic hydrocarbon content: < 1 % of the
	measuring range
Inlet pressure p _e	1200 hPa, ±100 hPa
Flow rate	< 20 l/h

Combustion gas

Note

An H_2 /He mixture may only be used if the gas analyzer has been ordered and delivered in the intended version.

Quality	Hydrogen (H ₂),	H ₂ /He mix
	Quality 5.0	(40 %/60 %)
Inlet pressure p _e	1200 hPa, ±100 hPa	1200 hPa, ±100 hPa
Maximum combustion	approx. 3 l/h	approx. 10 l/h
gas flow		

Note

A flow limiter must be provided on the hydrogen supply, see **Safe operation of the gas analyzer** on page 37.

Test gases

Quality	Nitrogen, Quality 5.0, synthetic air or
	catalytically cleaned air with an organic
	C < 1 % MBU
Inlet pressure p _e	1000 hPa, ±100 hPa
Flow rate	130 to 250 l/h

Test gases for endpoint calibration	
Quality	Sample component or substitute gas
	component in nitrogen or synthetic air with
	concentration adjusted to the measuring
	range
Inlet pressure p _e	1000 hPa, ±100 hPa
Flow rate	130 to 250 l/h

Zero point offset

If the zero point gas is not completely free of hydrocarbons (even purified nitrogen contains fractions of hydrocarbons), negative measured values may be displayed in small measuring ranges.

In this case, the sample gas contains a lower proportion of hydrocarbons than the zero point gas.

Gas and Electrical Connections

Refer to Fidas24 on page 65.

Safe operation of the gas analyzer

The device concept ensures that a concentration of combustible gas or an explosive mixture of combustible gas and ambient air cannot occur in the interior of the gas analyzer during normal operation.

The interior of the gas analyzer cannot be allocated to an (explosion protection) zone; an explosive gas mixture cannot escape to the outside.

The end user must make the following provisions to ensure safe operation of the gas analyzer:

- The combustion gas flow rate must be limited to a maximum of 10 l/h H₂ or 25 l/h H₂/He mixture. For this purpose, the end user has to provide suitable measures outside the gas analyzer.
- A shut-off valve must be installed in the combustion gas supply line to increase safety in the following operating conditions: shutting down the gas analyzer, failure of the instrument air supply, leakage in the combustion gas feed path inside the gas analyzer. This shut-off valve should be installed outside the analyzer house near the combustion gas supply.

FID analyzer module Fidas24 NMHC

Measuring principle

Non-methane flame-ionization detector (NMHC = non-methane hydrocarbons)

The analyzer module complies with the requirements for measuring instruments with flame ionization detection according to EN 12619.

A non-methane converter is used in the analyzer module for the measurement of ${\rm CH_4}$.

Sample components and measurement ranges

Sample components

Hydrocarbons.

The CH₄/NMHC ratio must be in the 1:9 to 9:1 range.

- Maximum concentration CH₄:
 26500 mg org. C/m³ or 50000 ppm C1.
- Maximum concentration NMHC: 5000 mg org. C/m³ or 9330 ppm C1.

The concentration of the gas components in the sample gas path must not exceed the temperature-dependent LEL. The analyzer temperature is $180\,^{\circ}\text{C}$.

Number of sample components

2 sample components: ${\rm CH_4}$ and THC. The calculated non-methane portion of the hydrocarbons is output as the 3rd NMHC component.

Smallest measuring range

0 to 5 to 0 to 1500 mg org. C/m³ or 0 to 10 to 0 to 3000 ppm C1

Largest measuring range CH₄ and THC

0 to 50 to 0 to 25000 mg org. C/m^3 or 0 to 100 to 0 to 50000 ppm C1

Largest measuring range NMHC

0 to 5000 mg org. C/m³ or 0 to 10000 ppm C1

Measuring range quantity and measuring range limits

1 to 4 measuring ranges

The measuring ranges are factory-set per customer order.

Stability

The following data only applies if all the influence variables (e.g. flow, temperature and air pressure) are constant.

They apply to measuring ranges \geq 50 mg org. C/m³; for smaller measuring ranges these only apply if they are factory-set in accordance with the order.

Linearity error

 \leq 2 % of span to 5000 mg org. C/m³, this value applies in one (calibrated) measuring range

Repeatability

≤ 0.5 % of measurement range

Zero drift

≤ 0.5 mg org. C/m³ per week

Span drift

≤ 0.5 mg org. C/m³ per week

Output fluctuation at zero point (2 σ)

 \leq 0.5 % of span at electronic T₉₀-time = 20 s

Detection limit (4 σ)

 \leq 1 % of span at electronic T₉₀ time = 20 s

Influences

Oxygen dependence

 \leq 2 % of measured value for 0 to 21 vol. % O_2 or \leq 0.3 mg org. C/m³, the larger value applies in each case

Temperature effect

Ambient temperature in permissible range.

At zero point and on sensitivity:
 ≤ 2 % of the measured value per 10 °C or ≤ 300 ppb C1 per 10 °C

Power supply effect

- DC 24 V \pm 5 %: \leq 0.2 % of span or
- AC 230 V \pm 10 %: \leq 0.2 % of span or
- AC 115 V \pm 10 %: \leq 0.2 % of span

Dynamic response

Warm-up time

≤ 2 hours

T₉₀time

 T_{90} < 2.5 s via bypass, T_{90} < 3 s via converter at sample gas flow = 80 l/h and electronic T_{90} time = 1 s

Switchover time

Between bypass and converter typically 20 s, depending on measuring range

Converter

Converter service life

The catalyst is a consumable material.

Its service life depends on the concentration of the converted hydrocarbons.

Catalyst poisons (e.g. SO_2 , HCI, H_2S , halogenated hydrocarbons, heavy metals) will shorten the converter service life. Their respective concentration should always be < 20 mg/m^3 . It is recommended to test the converter function once a year.

Calibration

Zero-point calibration

With synthetic air or catalytically purified air, depending on application.

Sensitivity calibration

With methane or propane in air, depending on application.

Wetted materials

Analyzer, gas lines and connectors
Stainless steel 1.4305 and 1.4571, FPM, PTFE, FFKM

Sample gas inlet conditions

Fidas24 – sample gas input conditions		
Temperature	≤ Thermostat temperature (thermostat	
	temperature for sample gas path, detector and	
	air injector ≤ 200 °C, factory-set at180 °C)	
Inlet pressure	p _{abs} = 800 to 1100 hPa	
Flow rate	approx. 80 to 100 l/h at atmospheric pressure	
	(1000 hPa)	
Humidity	≤ 40 % H ₂ O	

Note

The temperature, pressure and flow of the sample gas must be kept constant, to such an extent that the influence of variations on the measuring accuracy is acceptable. Refer to **Stability** on page 38.

Further properties of the sample gas

The sample gas must not be explosive at any time.

The analyzer module must not be used for the measurement of gases containing organometallic compounds, e.g. leadcontaining fuel additives or silicone oils.

Flammable gases

The gas analyzer may be used for the measurement of flammable gases provided that the flammable portion does not up-scale 5 Vol.-% CH_4 or does not up-scale C1 equivalents.

Requirements for the sample gas outlet

The outlet pressure must be the same as the atmospheric pressure.

_

... FID analyzer module Fidas24 NMHC

Operational gases

Instrument air

Parameter	Value/Description
Quality	According to ISO 8573-1 Class 2
	Particle size: max. 1 μm,
	Particle density: max. 1 mg/m³,
	Oil content: max. 0.1 mg/m³,
	Dew point: At least 10 °C below the lowest
	expected ambient temperature
Inlet pressure p _e	4000 hPa, ±500 hPa
Flow rate	Typically approx. 1800 I/h (1200 I/h for the air
	jet injector and approx. 600 l/h for the housing
	purge),
	max. approx. 2200 l/h (1500 l/h + 700 l/h)

Combustion air

Parameter	Value/Description	
Quality	Synthetic air or catalytically purified air	
	• Organic hydrocarbon content: < 1 % of the	
	measuring range	
Inlet pressure p _e	1200 hPa, ±100 hPa	
Flow rate	< 20 l/h	

Combustion gas

Note

An H_2 /He mixture may only be used if the gas analyzer has been ordered and delivered in the intended version.

Combustion gas parameter		
Quality	Hydrogen (H ₂),	H ₂ /He mix
	Quality 5.0	(40 %/60 %)
Inlet pressure p _e	1200 hPa, ±100 hPa	1200 hPa, ±100 hPa
Maximum combustion gas flow	approx. 3 l/h	approx. 10 l/h

Note

A flow limiter must be provided on the hydrogen supply, see **Safe operation of the gas analyzer** on page 40.

Test gases

Test Gases for Zero Calibration	
Quality	Synthetic air or catalytically purified air
Inlet pressure p _e	1000 hPa, ±100 hPa
Flow rate	130 to 250 l/h
Test gases for endpoint o	alibration
Sample components CH ₄	CH ₄ in air
THC sample components	C ₃ H ₈ in air or CH ₄ in air
Inlet pressure p _e	1000 hPa, ±100 hPa
Flow rate	130 to 250 l/h
Test gases for converter	effectiveness testing
Test Gas	CH ₄ or C ₂ H ₆ in air (separate test gas bottles),
	connection via a bypass

1000 hPa, ±100 hPa

130 to 250 l/h

Gas and Electrical Connections

Refer to Fidas24 on page 65.

Inlet pressure p_e

Flow rate

Safe operation of the gas analyzer

The device concept ensures that a concentration of combustible gas or an explosive mixture of combustible gas and ambient air cannot occur in the interior of the gas analyzer during normal operation.

The interior of the gas analyzer cannot be allocated to an (explosion protection) zone; an explosive gas mixture cannot escape to the outside.

The end user must make the following provisions to ensure safe operation of the gas analyzer:

- The combustion gas flow rate must be limited to a maximum of 10 l/h H₂ or 25 l/h H₂/He mixture. For this purpose, the end user has to provide suitable measures outside the gas analyzer.
- A shut-off valve must be installed in the combustion gas supply line to increase safety in the following operating conditions: shutting down the gas analyzer, failure of the instrument air supply, leakage in the combustion gas feed path inside the gas analyzer. This shut-off valve should be installed outside the analyzer house near the combustion gas supply.

AO2040-Fidas24 Ex for use in Zone 1, 21 und Zone 2, 22

The AO2040-Fidas24 Ex is an explosion proof variant of the Fidas24 analyzer module from the Advance Optima AO2000 series. The AO2040-Fidas24 Ex is a standalone variant of the AO2000.

The device consists of the following modules:

- Analyzer module Fidas24
- Electronics module with system controller and I/O modules
- Wall housing with display and control unit and attached purge and monitoring unit.

Explosion protection

The AO2040-Fidas24 Ex is available in the following variants:

- Equipment protection level EPL Gb for use in Zone 1
- Equipment protection level EPL Db for use in Zone 21
- Equipment protection level EPL Gc for use in Zone 2
- Equipment protection level EPL Dc for use in Zone 22

In all variants, the protection concept is based on a pressurized enclosure in accordance with EN 60079-2 and an intrinsically safe control unit in accordance with EN 60079-11. For the Zone 1 and Zone 21 variants, the customer interfaces must be protected with an all-pole isolating relay.

Versions

Design	Product code	Type examination certificate / Ex marking	Further requirements
Category "3G",	24041- XXX 2 XXXXXXXX oder	ATEX	_
Equipment protection level "Gc"	XXX3XXXXXXX	BVS 20 ATEX E 049 X	
		(Ex) II 3G Ex pxb ib IIC T3 Gc	
		IECEx	_
		IECEx BVS 20.0039X	
		Ex pxb ib IIC T3 Gc	
Category "2G",	24041-XXX 1 XXXXXXXX	ATEX	Installation of an additional interface relay for
Equipment protection level "Gb"		BVS 20 ATEX E 048 X	connections on the operator's side, if these can still
		(Ex) II 2G Ex pxb ib IIC T3 Gb	remain live after the power supply has been
		IECEx	switched off or if the pressurized encapsulation
		IECEx BVS 20.0039X	fails.
		Ex pxb ib IIC T3 Gb	
Category "3D", Equipment	24041-XXX 8 XXXXXXXX	ATEX	Installation of a key switch to confirm that the
protection level "Dc"		BVS 20 ATEX E 049 X	interior of the housing has been cleaned of dust
		(x) II 3D Ex pxb ib [ib] IIIC T195°C Dc	_during commissioning.
		IECEx	
		IECEx BVS 20.0039X	
		Ex pxb ib [ib] IIIC T195°C Dc	
Category "2D", equipment	24041-XXX 7 XXXXXXXX	ATEX	Installation of an additional interface relay for
protection level "Db"		BVS 20 ATEX E 048 X	connections on the operator's side, if these can still $% \left\{ \left(1\right) \right\} =\left\{ \left(1\right) \right\} $
		(Ex) II 2D Ex pxb ib [ib] IIIC T195°C Db	remain live after the power supply has been
		IECEx	switched off or if the pressurized encapsulation
		IECEx BVS 20.0039X	fails.
		Ex pxb ib [ib] IIIC T195°C Db	Installation of a key switch to confirm that the
			interior of the housing has been cleaned of dust
			during commissioning.

... AO2040-Fidas24 Ex for use in Zone 1, 21 und Zone 2, 22

Measuring principle

Flame-ionization detector

The analyzer module complies with the requirements for measuring instruments with flame ionization detection according to EN 12619.

Sample components and measurement ranges

Sample components

Hydrocarbons.

The concentration of the gas components in the sample gas path must not exceed the temperature-dependent LEL. The analyzer temperature is 180 °C.

Number of sample components

4 sample components

Smallest measuring range

0 to 5 to 0 to 1500 mg org. C/m³ or 0 to 10 to 0 to 3000 ppm C1

Largest measuring range

0 to 80 g org. C/m³ or 0 to 15 vol. % C1 Other measuring ranges on request.

Measuring range quantity and measuring range limits

1 to 4 measuring ranges

The measuring ranges are factory-set per customer order. Smallest to largest measuring range ratio 1:300 to 1:1500, depending on the configuration.

Stability

The following data only applies if all the influence variables (e.g. flow, temperature and air pressure) are constant.

They apply to measuring ranges \geq 50 mg org. C/m³; for smaller measuring ranges these only apply if they are factory-set in accordance with the order.

Linearity error

 \leq 2 % of span to 5000 mg org. C/m³, this value applies in one (calibrated) measuring range

Repeatability

≤ 0.5 % of measurement range

Zero drift

≤ 0.5 mg org. C/m³ per week

Span drift

< 2 % of the measured value per 10 K

Output fluctuation at zero point (2 σ)

 \leq 0.5 % of span at electronic T₉₀-time = 20 s

Detection limit (4 σ)

 \leq 1 % of span at electronic T₉₀-time = 20 s

Influences

Oxygen dependence

 \leq 2 % of measured value for 0 to 21 vol. % O₂ or \leq 0.3 mg org. C/m³, the larger value applies in each case

Temperature effect

- Ambient temperature in permitted range:
 - Standard: 5 to 45 °C
 - Measuring ranges < 100 ppm: 5 to 40 °C
- · At zero point and on the sensitivity:
 - < 2 % of the measured value per 10 K or < 300 ppb C1 per 10 K, the larger value shall respectively apply

Power supply effect

- DC 24 V ±5 %:
 - ≤ 0.2 % of span or
- AC 230 / 115 V ±10 %:
 - ≤ 0.2 % of span

Dynamic response

Warm-up time

 \leq 2 h at nominal voltage and 25 °C ambient temperature

T₉₀time

 T_{90} < 1.5 s at sample gas flow = 80 l/h and electronic T_{90} time = 1 s

Calibration

Zero-point calibration

With synthetic air or catalytically purified air or nitrogen, depending on the application.

Sensitivity calibration

With propane or another hydrocarbon (substitute gas) in air or nitrogen, depending on the application.

Wetted materials

Analyzer, gas lines and connectors

Stainless steel 1.4305 and 1.4571, FPM, PTFE, FFKM

Sample gas inlet conditions

Parameter	Value/Description	
Temperature	≤ 130 °C	
	(also applies in the case of heated sample gas	
	lines)	
Inlet pressure p _{abs}	800 to 1100 hPa	
Flow rate	Approx. 80 to 100 l/h	
	at atmospheric pressure (1000 hPa)	
Humidity	≤ 40 % H ₂ O	

Note

The temperature, pressure and flow of the sample gas must be kept constant, to such an extent that the influence of variations on the measuring accuracy is acceptable, refer to **Stability** on page 42.

Further properties of the sample gas

The sample gas must not be explosive at any time.

The analyzer module must not be used for the measurement of gases containing organometallic compounds, e.g. leadcontaining fuel additives or silicone oils.

Flammable sample gases

A DANGER

Explosion hazard

Explosion hazards due to flammable sample gases with a C1-equivalent of \geq 8 Vol-% CH₄.

The flammable sample gas that is fed in must have the following specifications:

Sample gas specifications

- The sample gas that is fed in must at no time, exceed the C1-equivalent of 8 Vol-% CH₄.
- The sample gas that is fed in must not be potentially explosive.
- The specifications must also be adhered to during the start-up and shut-down processes, and the pressure, temperature and gas matrix must be taken into account.

Note

An explosive mixture of gases is defined as a mixture containing combustion components, that falls within the lower (UEG) and upper explosion limits (OEG), which is accompanied by the simultaneous presence of oxidizers (e.g. air, oxygen).

Requirements for the sample gas outlet

The outlet pressure must be the same as the atmospheric pressure.

... AO2040-Fidas24 Ex for use in Zone 1, 21 und Zone 2, 22

Operational gases

Properties of the instrument air

Parameter	Value/Description	
Quality	According to ISO 8573-1 Class 2	
	Particle size: max. 1 μm,	
	Particle density: max. 1 mg/m³,	
	Oil content: max. 0.1 mg/m³,	
	Dew point: At least 10 °C below the lowest	
	expected ambient temperature	
Inlet pressure p _e	4000 hPa, ±500 hPa	
Temperature	Maximum 40 °C	
Flow rate	Typically approx. 1200 l/h, refer also to Purge	
	gas flow.	

Purging gas properties for pressurized enclosure (FS870S)

(in the case of separate supply)

Parameter	Value/Description	
Quality	Class 533, in accordance with DIN ISO 8573-1	
Inlet pressure p _e	4000 hPa, ±500 hPa	
Temperature	Maximum 40 °C	
Flow rate	Refer to Purge gas flow.	

Note

When using the instrument air of the Fidas24 as purging gas for the pressurized enclosure, the quality specified in the top table applies.

Combustion air

Parameter	Value/Description
Quality	 Synthetic air or catalytically purified air Organic hydrocarbon content: < 1 % of the measuring range
Inlet pressure p _e	1200 hPa, ±100 hPa
Flow rate	< 20 l/h

Combustion gas

Combustion gas parameter	
Quality	Hydrogen (H ₂), Quality 5.0
Inlet pressure p _e	1200 hPa, ±100 hPa
Combustion gas flow rate*	Typical ≤ 3 l/h, maximum 10 l/h

 The combustion gas flow is limited to a maximum of 10 l/h H₂ by an integrated flow limiter.

Note

The safety valve installed in the analyzer closes safely up to a combustion gas pressure of 6 bar.

The operator must take suitable measures to prevent the occurrence of higher pressures at the combustion gas inlet.

Test gases

Quality	 Nitrogen, quality 5.0; synthetic or catalytically
	purified air
	• Organic hydrocarbon content of < 1 $\%$ of the
	measuring range
Inlet pressure p _e	Without pressure and in excess or at least 130 l/h
Flow rate	130 to 250 l/h

Test gases for endpoint calibration	
Quality Sample component or substitute gas compon	
	in nitrogen or synthetic air with concentration
	adjusted to the measuring range
Inlet pressure p _e	Without pressure and in excess or at least 130 l/h
Flow rate	130 to 250 l/h

Purge gas flow

Initial purge

The purging gas flow rate and the duration of the purging process for the purging and monitoring unit FS870S are preset at the factory.

Parameter	Factory setting
Initial purge volumes	250
Purging gas flow rate during initial purging	3600 l/h (1 l/s)

During operation

The purging gas flow rate and the pressurized control range of the purging and monitoring unit FS870S are preprogrammed at the factory.

Parameter	Factory setting
Purge Gas Flow Rate during Operation	1080 l/h
Monitored pressurized control range	0.8 to 15 hPa

Gas and Electrical Connections

Refer to Fidas24 Ex on page 66.

Electrical data for the power supply

The power supply unit built into the system housing is used to supply the 24 V DC to the Fidas24 Ex module and the associated electronics with DC energy.

Power supply (entire device)		
Input voltage	110 to 230 V AC, ±10 %	
Input Current	Maximum 2.0 A	
Line Frequency Range	50 to 60 Hz, ±3 Hz	
Power consumption	Maximum 200 VA	
(entire device)		
Output Voltage	24 V DC, ±3 %	
	(for optional cut-off relay control)	
Connection	At the corresponding terminals of the purging	
	and monitoring unit, refer to Purging and	
	monitoring unit FS870S on page 83.	

Battery

Application

Supply to the built-in clock in case of a voltage failure.

Type

Lithium button cell 3 V CR 2032

Note

Only the original battery type may be used as a replacement:

- Varta CR 2032 type no. 6032 or
- Renata type no. CR2032 MFR

Safe operation of the gas analyzer

The device concept ensures that a concentration of combustible gas or an explosive mixture of combustible gas and ambient air cannot occur in the interior of the gas analyzer during normal operation.

The interior of the gas analyzer cannot be allocated to an (explosion protection) zone; an explosive gas mixture cannot escape to the outside.

The end user must make the following provisions to ensure safe operation of the gas analyzer:

- The maximum permissible combustible gas inlet pressure must not be up-scaled, see Combustion gas on page 44.
- A shut-off valve must be installed in the combustion gas supply line to increase safety in the following operating conditions: shutting down the gas analyzer, failure of the instrument air supply, leakage in the combustion gas feed path inside the gas analyzer. This shut-off valve should be installed outside the analyzer house near the combustion gas supply.

Housing design

The housing is designed as a wall unit (model AO2040) with housing protection IP 65.

Housing materials

- · Housing: stainless steel 1.4016
- Module back wall: aluminum
- · Keyboard membrane: polyester

Housing color

Light gray (RAL 7035), basalt gray (RAL 7012)

Weight

Wall unit with one analyzer module: 18 to 23 kg

Dimensions

Refer to Model AO2040-Fidas24 Ex on page 83.

LS25 Laser analyzer module

Overview

Figure 1: AO2000-LS25

The LS25 is an external AO2000 laser analyzer module for an in situ or cross-stack application directly on site in the process, additional gas extraction and gas conditioning systems are therefore not necessary. This improves the availability of measurements and eliminates the risk of sample handling failure. The analyzer is mounted directly on flanges, purge gas connections and a tilting mechanism for easy alignment are included in the purge flange.

Rough process conditions are not a problem for the LS25, so measurements are possible, for example, under high process temperatures, high process pressures, high dust exposure and even with corrosive gases. Thanks to the tunable diode laser absorption spectroscopy (TDLAS), a non-contact optical measurement method, the analyzer remains unaffected by impurities and corrosive substances and therefore does not need regular maintenance.

Continuous purging of the optical windows prevents dust and other impurities from settling and the measuring gas from coming into contact with the optical windows. Measurement as an extractive system with an external measuring cell is of course also possible.

Highlights	Typical applications	Customer benefits
Line measurement over	Metal industry	In situ measurement
the complete measuring	J	
distance		
Fast reaction time	Power plants	fast process
		optimization
contactless	Waste incineration	proven technology
measurement	plants	
No interference with	Chemical industry	Low maintenance costs
associated gases		
no zero point drift	Petrochemical industry	Reduction of emissions
		into the environment
Available for tough	Cement industry	Increased safety
process conditions		
ATEX, IECEX and CSA	Pulp & Paper Industry	Increased system
certified		availability

Measuring principle

The LS25 laser analyzer module is based on a measuring principle called single-line spectroscopy.

One single target gas absorption line with no interference

One single target gas absorption line with no interference is chosen in the near infrared spectral range.

A single mode diode laser operating around room temperature scans the respective absorption line.

The absorption caused by the sample gas is measured by means of a receiver located opposite, and the concentration is determined based on this.

An automatic correction of pressure and temperature changes is possible.

Sample components and measurement ranges

The LS25 laser analyzer module has one physical measurement range per sample component. The indicated measurement range can be freely calibrated within the physical measurement range.

The smallest detection limits and corresponding measuring ranges are shown in the table below.

Other sample components on request.

The optical path length is typically between 0.5 and 15.0 m. Application-related deviations can occur.

In some cases, additional measures must be taken to achieve the smallest measuring ranges:

The measurement of low O₂ and H₂O concentrations require device and process purging with nitrogen.

Actual detection limit for a specific application will depend on the process conditions (pressure, temperature and gas composition) and optical path length. There are different device versions with different detection limits and process conditions for certain sample components.

Min. measurement range, max. pressure and max. temperature cannot necessarily be realized simultaneously. The maximum pressure and temperature given are physical (spectroscopic) limits. Applications with increased temperature or pressure or with corrosive or flammable gas may require additional equipment.

Sample components and measurement ranges

Sample	Smallest range	Max.	Max.
components*		abs. pressure	temperature
O ₂	0 to 0.1 Vol%	10 bar	1500 °C
NH ₃	0 to 15 ppm	2 bar	600 °C
HCI	0 to 5 ppm	2 bar	600 °C
HF	0 to 2 ppm	2 bar	400 °C
H ₂ S	0 to 300 ppm	2 bar	300 °C
H ₂ O (ppm)	0 to 10 ppm	2 bar	1000 °C
H ₂ O (vol.%)	0 to 0.5 Vol%	2 bar	1500 °C
CO (ppm)	0 to 30 ppm	2 bar	1500 °C
CO (vol.%)	0 to 0.3 Vol%	2 bar	1500 °C
CO ₂ (ppm)	0 to 100 ppm	2 bar	300 °C
CO ₂ (vol.%)	0 to 1 Vol%	2 bar	1500 °C
NO	0 to 1000 ppm	2 bar	350 °C
N ₂ O	0 to 100 ppm	2 bar	200 °C
HCN	0 to 30 ppm	2 bar	300 °C
CH ₄ (vol.%)	0 to 1 Vol%	3 bar	1000 °C
CH ₄ (ppm)	0 to 20 ppm	3 bar (290 psi)	300 °C
NH ₃ + H ₂ O	0 to 20 ppm	1.5 bar	600 °C
	0 to 5 Vol%		
HCI + H ₂ O	0 to 10 ppm	1.5 bar	600 °C
	0 to 10 Vol%		
HF + H ₂ O	0 to 3 ppm	1.5 bar	400 °C
	0 to 2 Vol%		
CO (vol.%) +	0 to 1 Vol%	1.5 bar	600 °C
CO ₂ (vol.%)	0 to 1 Vol%		
HCI + CH ₄	0 to 300 ppm	1.5 bar	200 °C
	0 to 0.2 Vol%		
CO (ppm) + CH ₄	0 to 20 ppm	1.5 bar	1500 °C
	0 to 200 ppm		
CO (ppm) +	0 to 300 ppm	1.5 bar	1500 °C
H ₂ O (vol.%)	0 to 10 Vol%		
O ₂ + Temp.	0 to 1 Vol%	2.0 bar (290 psi)	1500 °C
	0 bis 100 °C		

Higher pressures and other sample components on request.

Note

The specified data are based on a 1 m optical path length, 25 °C sample gas temperature and a sample gas pressure of 1 barA, sample gas in nitrogen with a confidence level of 95%, deviations from this are possible depending on the process.

Number of measuring ranges

1 range per sample component, 1 x transmission

Largest measuring range

Largest measuring range is generally 100 times the minimum measuring range for the same conditions. Larger measuring ranges are possible, for example by adjusting the optical path length or choosing a different absorption line, please contact ABB in this regard.

Sample gas properties

Maximum process gas temperature and pressure are given in the **Sample components and measurement ranges** on page 46 table.

Quantification of dust/particle concentration in the sample gas is necessary in order to determine max OPL. The maximum dust concentration must be checked by ABB Analytical.

Purge gasproperties

The purge gas (instrument air or nitrogen, depending on the process) must be free of oil and dust.

Recommendation: in accordance with ISO 8573.1 Class 2-3

The process purging gas flow is between 10 and 50 l/min, depending on the application.

The analyzer purging gas flow (Ex pxb – Zone 1 devices) must be at least 11 l/min or 48 l/min.

Stability

Linearity error

≤1% of measuring span

Repeatability

 \pm Detection limit or \pm 1 % of reading, whichever is greater (depending on the gas and application)

Zero drift

Due to the measuring principle, there is no zero point drift.

Span drift

< 4 % of measuring range per 6 months

Output signal fluctuation (2 σ)

≤ 0.5 % of smallest measuring range

Detection limit (4 σ)

≤ 1 % of smallest measuring range

_

... LS25 Laser analyzer module

Influences

Flow effect

No effect on the measurement, but the flow will determine the amount of purge gas needed.

Associated gas effect/cross sensitivity

No cross sensitivity within normal operation conditions.

Temperature effect

- Ambient temperature in permissible range:
 No significant effect
- Effect of sample gas temperature: typically ≤ 2 % of measured value per 10 °C (dependent on type of gas and gas conditions).
 For large variations in sample gas temperature (> ±20 °C) external temperature measurement for compensation is recommended.

Pressure effect

- At the zero point: no influence effect
- Automatic compensation
 by measurement of the absorption line width,
 in the case of larger fluctuations in the sample gas
 pressure
 - an external pressure measurement is recommended for compensation.

Power supply effect

DC 24 V ±5 %: ≤ 0.2 % of span

Dynamic response

Warm-up time

Approx. 1 hours

Response time

Less than 2 seconds without signal averaging

Calibration

Zero point check

With nitrogen or with ambient air free of sample components. The zero point cannot be calibrated. Due to the measuring principle, there is no zero point drift.

End point check

A review of the calibration data is recommended every 6 to 12 months, depending on the application

Validation

Depending on the application, online validation is possible using the optional internal validation cell

Calibration interval

Depending on the application; typically once or twice a year

End pointcalibration

With test gas and a calibration cell.

Materials

Purge and alignment unit

Stainless steel 316SS.

Window

BK7 glass, optional: synthetic quartz glass, for HF: sapphire glass

Mounting

Installation site requirements

The mounting location strongly influences the measurement result. The measurement gas must be well stirred at the selected location to produce a representative measurement result.

- Stratification in the measurement gas path results in erroneous measurement.
- If the measurement gas is charged with dust, the LS25 must be mounted at right angles to the process gas flow.

Adjustment or installation flanges

Adjustment and installation flanges are available in the following variants and are compatible with:

- DN 50/PN 10 to 40, DN 80/PN 10 to 40, DN 100/PN 10 to 40,
- ANSI 2"/150 lbs, ANSI 2"/300 lbs, ANSI 3"/150 lbs,
- ANSI 3"/300 lbs, ANSI 4"/150 lbs, ANSI 4"/300 lbs

Note

The maximum permissible process pressure for the alignment flange is 1.5 bar absolute; an isolation flange must be used for higher pressures.

Alignment tolerance

Flanges parallel within 1.5°

Purging of windows

Compressed air or nitrogen, dry and oil-free (see **Purge gasproperties** on page 47)

Gas ports for purging

Choice of 6, 8, 10, 12 mm, 3%" or 14" Swagelok® fitting. For connection drawing, see **Connection diagram flange - and housing purging** on page 52.

Weight

• Transmitter unit: 6.3 kg; Ex version: 7.9 kg

Receiver unit: 3.9 kgPower supply: 1.0 kg

Dimensions

Refer to Dimensions, position of the purging connections and installation of cables on page 51.

Electrical connections

Connection to AO2000 system housing

Ethernet 10/100BASE-T; RJ45 plug; Cable length: standard 15 m, max. 100 m

Connection to receiver unit

15-pole female Sub-D connector Cable length: min. 5 m, max. 150 m

Power supply, external pressure and temperature signals

15-pole male Sub-D connector

- Cable length laser unit–power supply: min. 3 m, max. 100 m;
- Cable length power supply–connector: 3 m

Note

With Ex devices, the cables are not connected via connectors, but are already connected by means of a cable gland and internal terminals upon delivery.

Service computer

RS232, 9-pin female Sub-D connector; Ethernet

Connection diagrams

Refer to Dimensions, position of the purging connections and installation of cables on page 51.

Power supply

Input voltage

The transmitter unit is supplied with voltage via an external power supply unit. The power supply unit is optionally included in the scope of delivery

- Transmitter unit:
 24 V DC, ±5 %
- Power supply: input 85 to 264 V AC, output 24 VD C

Power

Approx. 20 W

_

... LS25 Laser analyzer module

Use in Potentially Explosive Atmospheres

The LS25 has ATEX, IECEx and CSA certificates for use in potentially explosive atmospheres.

The external power supply is suited for use in ATEX Zone 2 and CSA Class I, Division 2.

ATEX/IECEx Zone 1, 21

ATEX Marking		
ATEX certificate:		Presafe 20 ATEX 69761X
Ambient temperature 1	amb.	-20°C ≤ Ta ≤ +55°C
(Ex) II 2 G Ex pxb [op i	s Ga] IIC T4 Gb	
$\langle \mathcal{E}_{x} \rangle$ II 2 D Ex pxb [op i	s Da] IIIC T100°C Db	

Table 1: Ex mark according to ATEX

IECEx marking		
IECEx certificate:	IECEx PRE 20.0072X	
Ambient temperature T _{amb.}	-20°C ≤ Ta ≤ +55°C	
Ex pxb [op is Ga] IIC T4 Gb		
Ex pxb [op is Da] IIIC T100°C Db		

Table 2: Ex marking according to IECEx

ATEX/IECEx Zone 2, 22

ATEX Marking	
ATEX certificate:	Presafe 16 ATEX 8621X
Ambient temperature T _{amb.}	-20°C ≤ Ta ≤ +55°C
(Ex) II 3 G Ex nA nC [op is Ga] IIC T4 Gc	
Ex li 3 D Ex tc [op is Da] IIIC T100°C Dc	

Table 3: Ex mark according to ATEX

IECEx marking	
IECEx certificate:	IECEx PRE 20.0071X
Ambient temperature T _{amb.}	-20°C ≤ Ta ≤ +55°C
Ex nA nC [op is Ga] IIC T4 Gc	
Ex tc [op is Da] IIIC T100°C Dc	

Table 4: Ex mark according to IECEx

Power supply unit TEX 120-124

Ex marking	
ATEX certificate:	EPS 08 ATEX 1 137 X
Ambient temperature T _{amb.}	-40°C to 70°C
⟨Ex⟩ 3 G Ex nA IIC T4 Gc	

Table 5: Ex mark according to ATEX

CSA certification, gas analyzer

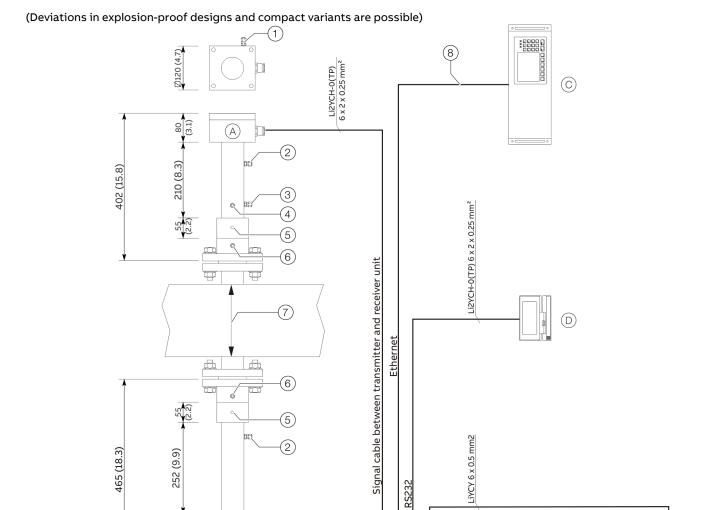
CSA Class I Division 2 Groups A, B, C, D, Temperature class T4, electrical equipment

Applicable requirements:

- CAN/CSA C22.2 No. 0-M91 (R2001): General Requirements – Canadian Electrical Code, Part II
- CSA standard C22.2 No. 142-M1987:
 Process Control Equipment
- CSA standard C22.2 No. 213-M1987:
 Non-Incendive Electrical Equipment for Use in Class I,
 Division 2 Hazardous Locations
- UL standard No. 916-2007: Energy Management Equipment
- ANSI/ISA-12.12.01-2010:

 Non-Incendive Electrical Equipment for Use in Class I and II, Division 2 and Class III, Divisions 1 and 2

 Hazardous (Classified) Locations


Certificate no.:

1105720

CSA certification, power supply unit

The power supply unit has its own CSA approval, which is registered under UL File e213613 (Class I, Division 2, group A, B, C & D, temp. Class T4).

Dimensions, position of the purging connections and installation of cables

- (A) Receiver unit
- (B) Transmitter unit
- © AO2000 central unit
- (D) Service PC
- (E) Power supply unit

- 1 Purge gas outlet (housing purging), Ø 6 mm
- 2 Purge gas inlet (housing purging), Ø 6 mm
- (3) Calibration gas outlet, Ø 6 mm
- 4 Calibration gas outlet, Ø 6 mm
- 5 Tap hole M8

B

168 (6.6)

93(3.66) Purge gas inlet (flange purging), Ø 10 mm

<u> АВВВ , НИВВ</u>

83(3.27)

85...264 V, 50/60 Hz

(E)

HO5RR-F,

AAAA AAAA

174(6.85) 164 (6.46) 154 (6.06)

(85.0)0.7

56(2.20)

- (7) Optical distance 0.5 to 15 m (1.6 to 49.2 ft)
- 8 CAT5 cable, for outdoor use or for direct earthing, with double PVC sheath

Figure 2: Block diagram of AO2000-LS25

270 (10.6)

100 (3.9)

κ̈́ κ̈́

___ å

* 4

... LS25 Laser analyzer module

Connection diagram flange - and housing purging

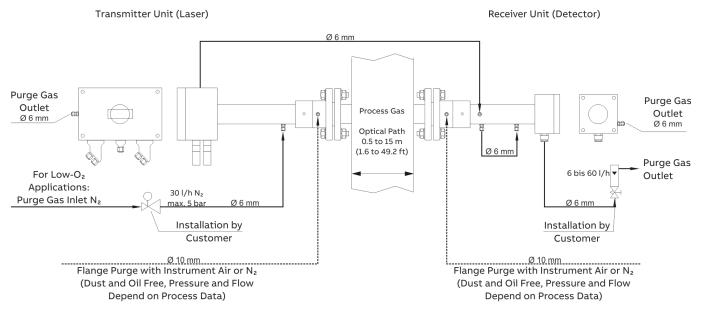


Figure 3: Purging of the transmitter and receiver units

Electrochemical oxygen sensor

Note

- The oxygen sensor is always associated with an analyzer module and must be installed in the same housing with that analyzer module.
- The oxygen sensor cannot be used with the following analyzer modules:
 - Limas21 UV, Limas21 HW, Uras26 with stainless steel, PFA, PTFE gas lines,
 - Fidas24, Fidas24 NMHC,
 - Analyzer modules during measurement of corrosive gases.
 - Analyzer modules in category 2G.

Measuring principle

Electrochemical oxygen sensor

Sample components and measurement ranges

Sample component

Oxygen (O₂)

Smallest measuring range

0 to 5 vol.% O₂

Measuring range quantity and measuring range limits

1 to 2 measuring ranges

adjustable from 0 to 5 vol. % O2 to 0 to 25 vol. % O2

Stability

The following data only applies if all the influence variables (e.g. flow, temperature and air pressure) are constant.

Linearity error

≤ 1 % of measuring span

Repeatability

≤ 0.5 % of span

Zero drift

Stable over long-term due to absolute zero point

Span drift

≤1% of the measurement range per week

Output signal fluctuation (2 σ)

 \leq 0.2 % of the total measuring range at electronic T₉₀-time (static/dynamic) = 5/0 s

Detection limit (4 σ)

 \leq 0.4 % of the total measuring range with electronic T_{90} -time (static/dynamic) = 5/0 s

Influences

Flow effect

Flow rate in the 20 to 100 l/h range: ≤ 2 % of the total measuring range

Temperature effect

Ambient temperature in the permissible range: $\leq 0.2 \text{ vol.}\% \text{ O}_2 \text{ per } 10 \,^{\circ}\text{C}$

Air pressure effect

- At the zero point: no influence effect
- On sensitivity without pressure correction:
 ≤ 1 % of the measured value per 1 % of air pressure change
- on sensitivity without pressure correction ≤ 0.2 % of the measured value per 1 % air pressure change

Pressure correction is only possible if the oxygen sensor is connected to an analyzer module with an integral pressure sensor.

Power supply effect

Voltage and frequency in the permissible range: $\leq 0.2\%$ of the total measuring range

_

... Electrochemical oxygen sensor

Dynamic response

$T_{90} time \\$

 $T_{90} \le 30$ sec, depending on sample gas flow and system layout

Calibration

Zero-point calibration

The oxygen sensor zero is not calibrated since it is fundamentally stable.

End-point calibration

With ambient air at 20.96 vol.% O₂

Materials

- Sensor: polystyrene-ABS, PTFE, FPM (fluororubber)
- Housing: PVC-U, FPM gasket (fluororubber)
- Gas connectors: stainless steel, 1.4571

Sample gas inlet conditions

The oxygen sensor must not be used for measurement of flammable gases and ignitable gas/air or gas/oxygen mixtures.

Oxygen sensor – sample gas inlet conditions

Temperature

The sample gas dew point should be at least 5 $^{\circ}$ C below the temperature throughout the sample gas path. Otherwise a sample gas cooler or condensate trap is required.

Moisture content

H₂O dew point ≥ 2 °C

The oxygen sensor may not be used with dry sample gases.

Designation of gas connections	
Inlet pressure	p _e = 2 to 500 hPa
Outlet pressure	Atmospheric pressure
Gauge pressure in the sample cell:	max. 500 hPa.
Flow rate	20 to 100 l/h

Associated gas

The oxygen sensor may not be used if the associated gas contains the following components:

H₂S, compounds containing chlorine or fluorine, heavy metals, aerosols, mercaptans, alkaline components

Pneumatic Module

Note

- The pneumatics module is always associated with an analyzer module and must be installed in the same housing with that analyzer module.
- The pneumatics module cannot be used when stainless steel tubes are used for the internal gas lines.
- The pneumatics module cannot be used with the following analyzer modules:
 - Limas21 UV, Limas21 HW with stainless steel, PFA or PTFE gas lines,
 - Fidas24, Fidas24 NMHC,
 - Analyzer modules in category 2G.

Test gas supply

Version

Choice of one or three 3/2-way solenoid valves

Power

Approx. 3 W per solenoid valve

Materials of the wetted parts

PVDF, FPM, aluminum, stainless steel 1.4305

Fine filtration

Version

Disposable filter with borosilicate glass microfiber filter element

Retention rate

99.99 % for particles > 0.1 μm

Materials of the wetted parts

Polyamide, borosilicate glass with PVDF binder

Gas supply

Version

Magnetic piston pump

Feed rate

Max. 60 l/h, depending on analyzer module and inlet/outlet pressure

Flow

Adjustable

Power

approx. 10 W

Materials of the wetted parts

PVDF, EPDM, stainless steel 1.4571

Flow monitor

Version

Miniature flow sensor

Display and limit value monitoring

Configurable

Materials of the wetted parts

Al₂O₃, silicon, gold, GFK

Pressure monitoring

Pressure sensor

(Optional) for additional monitoring tasks, e.g. pressure measurement in the second gas path of the Uras26 analyzer module

Sample gas inlet conditions

The pneumatics module must not be used for measurement of flammable gases and ignitable gas/air or gas/oxygen mixtures.

Pneumatic module - sample gas inlet conditions

Temperature

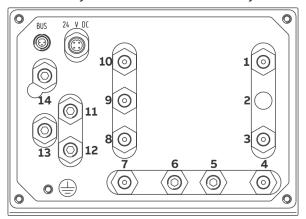
5 to 45 °C (41 to 113 °F)

The sample gas dew point should be at least 5 $^{\circ}$ C below the temperature throughout the sample gas path. Otherwise a sample gas cooler or condensate trap is required.

Pressure		
Inlet pressure	p _e = -80 to +20 hPa	
Flow rate	30 to 60 l/h	

Corrosive gases

Corrosive associated gas components and aerosols must be cooled or undergo prior absorption. _


Gas connections

Uras26

The following illustration shows the assignment of the gas connections as an example for the three variants: $\frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right)$

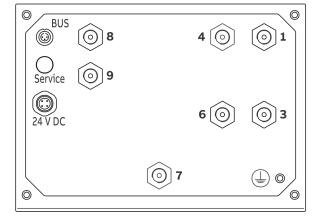
- (A) 1 gas path with 1 sample cell,
- (B) 1 gas path with 2 sample cells in series and
- © 2 separate gas paths with 1 sample cell each.

The actual gas connection arrangement of an analyzer module is found in the analyzer data sheet for the delivered instrument.

F00425

Figure 4: Gas connections Uras26 (model EL3040)

Gas connections Uras26


Pos.	Connection	Supplementary information	Design
1	Pressure sensor (option)	The pressure sensor is connected to the Pos. 1 terminal if the internal gas lines are designed as stainless steel pipes, or if the 'Pressure sensor connected outside by hose' option is ordered.	 1/6 NPT female thread (stainless steel 1.4305) Connection of hose lines: straight screw-in socket (PP) with hose nozzles for hoses with inside diameter 4 mm
2	Not assigned	_	(included in scope of delivery)
3	Sample gas inlet (gas path 1)	Variant(A), (B) or (C).	Connection of piping:
4	Sample gas outlet (gas path 1)	For one measuring cell (variant \widehat{A}) and for two measuring cells with separate gas paths (variant \widehat{C})	screw-in fittings (not included in scope of delivery)
5	Purge gas inlet (housing)	Option	
6	Purge gas outlet (housing)	Optional, also with flow sensor	_
7	Sample gas inlet (gas path 2)	Variant ©	_
8	Sample gas outlet (gas path 2)	Variant ©	_
	Sample gas outlet (gas path 1)	For two sample cells in series (variant (B))	
9	Reference gas inlet	Optional, sample cell 1 flowing reference gas	
10	Reference gas outlet		

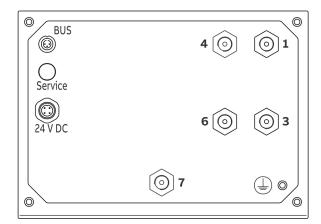
Gas connections pneumatic module

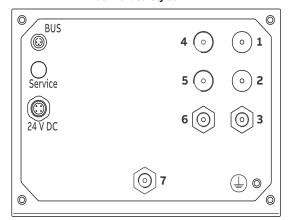
Pos.	Connection	Supplementary information	Design
11	Sample gas inlet (gas path 1)	Variant(A), (B) or (C).	1/8 NPT female thread (stainless steel 1.4305)
12	End point sample gas inlet (gas path 1)	With 3 solenoid valves or sample gas inlet variant © gas	Connection of hose lines:
		path 2 (with flow sensor only)	straight screw-in socket (PP) with hose
13	Test gas/zero point gas inlet (gas path	With 1 or 3 solenoid valves or sample gas outlet variant	nozzles for hoses with inside diameter 4 mm
	1)	\bigcirc gas path 2 (with flow sensor only) – in this case to be	(included in scope of delivery)
		connected to sample gas inlet 7	Connection of piping:
14	Sample gas outlet (gas path 1)	Variant (A) , (B) or (C) – to be connected to sample gas	screw-in fittings (not included in scope of
		inlet 3	delivery)

Limas21

Limas21 UV: standard cell with FPM or PTFE hoses, quartz cell with FPM hoses, center connection cell made of aluminum or quartz

Limas21 UV: quartz cell with PFA tubes




Figure 5: Gas connections Limas21 UV

Limas21 UV gas connections

Pos.	Connection	Supplementary information	Design
1	Sample gas inlet	<u> </u>	1/8 NPT female thread (stainless steel 1.4305)
3	Purge gas inlet housing	Option	Connection of hose lines:
4	Sample gas outlet	_	straight screw-in socket (PP) with hose
6	Purge gas outlet housing	Option	nozzles for hoses with inside diameter 4 mm
7	Pressure sensor	The pressure sensor is located in the sample gas path if	(included in scope of delivery)
		hoses are used as the internal gas lines. If tubing is used	 Connection of piping:
		for internal gas lines, the pressure sensor is routed to	screw-in fittings (not included in scope of
		the outside via a hose.	delivery)
8	End-point gas inlet	Option with 3 solenoid valves, not for version with PTFE	
		hoses	
9	Zero-point gas inlet	Option, with 1 or 3 solenoid valves, not for version with	
		PTFE hoses	

... Gas connections

Limas21 UV: safety cell

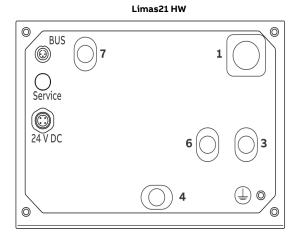


Figure 6: Gas connections Limas21 UV+HW

Limas21 UV +HW gas connections

Pos.	Connection	Supplementary information	Design
1	Sample gas inlet		½ NPT female thread (stainless steel 1.4305)
2	Sample gas outlet	_	Connection of hose lines:
3	Purge gas inlet housing	Option with Limas21 UV	straight screw-in socket (PP) with hose
4	Purge gas inlet sample cell	_	nozzles for hoses with inside diameter 4 mm
5	Purge gas outlet sample cell	_	(included in scope of delivery)
6	Purge gas outlet housing	Option with Limas21 UV	Connection of piping:
7	Pressure sensor	Limas21 UV:	screw-in fittings (not included in scope of
		The pressure sensor is located in the sample gas path if	delivery)
		hoses are used as the internal gas lines. If tubing is used	
		for internal gas lines, the pressure sensor is routed to	
		the outside via a hose.	
		Limas21 HW:	
		The pressure sensor is routed to the outside via a hose.	

Magnos206

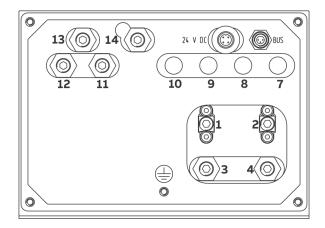


Figure 7: Gas connections Magnos206

F00427

Magnos206 gas connections

The sample cell is connected directly to the gas ports.

Pos.	Connection	Supplementary information	Design
1	Sample gas inlet	_	1/8 NPT female thread (stainless steel 1.4305)
2	Sample gas outlet	-	Connection of hose lines:
3	Purge gas inlet analyzer	not in version with performance test for emission	straight screw-in socket (PP) with hose
4	Purge gas outlet analyzer	monitoring	nozzles for hoses with inside diameter 4 mm
7	Purge gas inlet housing	Option	(included in scope of delivery)
8	Purge gas outlet housing	Optional, also with flow sensor	Connection of piping: screw-in fittings (not included in scope of
9	Pressure sensor 1	Option	
10	Pressure Sensor 2		delivery)

Gas connections pneumatic module (option)

Pos.	Connection	Supplementary information	Design
11	Sample gas inlet	-	1/8 NPT female thread (stainless steel 1.4305)
			Connection of hose lines:
12	End-point gas inlet	With 3 solenoid valves	straight screw-in socket (PP) with hose
			nozzles for hoses with inside diameter 4 mm
13	Test gas/zero point gas inlet	With 1 or 3 solenoid valves	(included in scope of delivery)
			Connection of piping:
14	Sample gas outlet	To be connected to sample gas inlet 1	screw-in fittings (not included in scope of
	. 3		delivery)

... Gas connections

Magnos28

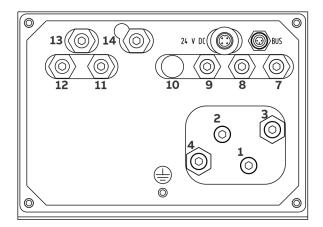
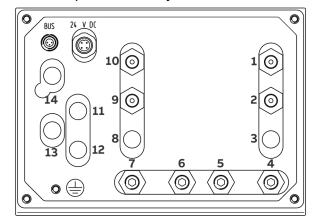


Figure 8: Gas connections Magnos28

Magnos28 gas connections

The sample cell is connected directly to the gas ports.


Pos.	Connection	Supplementary information	Design
1	Sample gas inlet	_	1/8 NPT female thread (stainless steel 1.4305)
2	Sample gas outlet	_	Connection of hose lines:
3	Purge gas inlet analyzer	not in version with performance test for emission	straight screw-in socket (PP) with hose
4	Purge gas outlet analyzer	monitoring	nozzles for hoses with inside diameter 4 mm
7	Purge gas inlet housing	Option	(included in scope of delivery)
8	Purge gas outlet housing	Optional, also with flow sensor	Connection of piping: screw-in fittings (not included in scope of
9	Pressure sensor 1	Option	
10	Pressure Sensor 2		delivery)

Gas connections pneumatic module (option)

Pos.	Connection	Supplementary information	Design
11	Sample gas inlet	<u></u>	 1/8 NPT female thread (stainless steel 1.4305) Connection of hose lines:
12	End-point gas inlet	With 3 solenoid valves	straight screw-in socket (PP) with hose nozzles for hoses with inside diameter 4 mm
13	Test gas/zero point gas inlet	With 1 or 3 solenoid valves	(included in scope of delivery)Connection of piping:
14	Sample gas outlet	To be connected to sample gas inlet 1	screw-in fittings (not included in scope of delivery)

Magnos27

Sample cell connection by means of FPM hoses

Sample cell direct connection

Figure 9: Gas connections Magnos27

Magnos27 gas connections

Note on the direct connection of the sample chamber

The sample cell is connected directly to the gas ports (for wall-mount housing only). Application e.g. when external gas supply is connected and for short T_{90} times.

Pos.	Connection	Supplementary information	Design
1	Purge gas inlet housing	Option	1/8 NPT female thread (stainless steel 1.4305)
2	Purge gas outlet housing	Optional, also with flow sensor	 Connection of hose lines:
3	_	_	straight screw-in socket (PP) with hose
4	Sample gas inlet	_	nozzles for hoses with inside diameter 4 mm
5	Purge gas inlet analyzer	_	(included in scope of delivery)
6	Purge gas outlet analyzer	_	Connection of piping:
7	Sample gas outlet	_	screw-in fittings (not included in scope of
8	_	_	delivery)
9	Pressure sensor 1	Option	
10	Pressure Sensor 2		

Pneumatic module gas connections (optional - not in version with sample cell direct connection)

Pos.	Connection	Supplementary information	Design
11	Sample gas inlet	<u>.</u>	1/8 NPT female thread (stainless steel 1.4305)
			 Connection of hose lines:
12	End-point gas inlet	With 3 solenoid valves	straight screw-in socket (PP) with hose
			nozzles for hoses with inside diameter 4 mm
13	Test gas/zero point gas inlet	With 1 or 3 solenoid valves	(included in scope of delivery)
			 Connection of piping:
14	Sample gas outlet	To be connected to sample gas inlet 4	screw-in fittings (not included in scope of
	2	, ,	delivery)

... Gas connections

ZO23

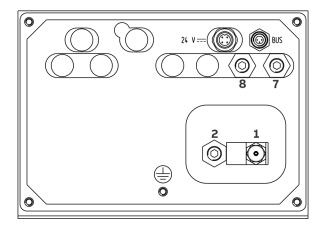
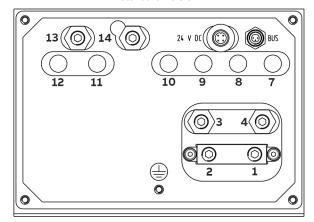


Figure 10: Gas connections ZO23


ZO23 gas connections

The measuring chamber is connected to the sample gas inlet connection via a stainless steel tube (inlet side) and to the sample gas outlet connection via a FPM hose (outlet side).

Pos.	Connection	Supplementary information	Design
1	Sample gas inlet	-	3 mm Swagelok® screwed connection
2	Sample gas outlet	_	1/8 NPT female thread (stainless steel 1.4305)
7	Purge gas inlet housing	For IP54 version only	 Connection of hose lines:
8	Purge gas outlet housing	For IP54 version only	straight screw-in socket (PP) with hose
			nozzles for hoses with inside diameter 4 mm
			(included in scope of delivery)
			 Connection of piping:
			screw-in fittings (not included in scope of
			delivery)

Caldos25

Standard Version

Versions for corrosive sample gas or for flowing reference gas

Figure 11: Gas connections Caldos25

Caldos25 gas connections

The sample cell is connected directly to the gas ports.

Pos.	Connection	Supplementary information	Design
1	Sample gas inlet	-	1/8 NPT female thread (stainless steel 1.4305)
2	Sample gas outlet	-	 Connection of hose lines:
3	Purge gas inlet analyzer	_	straight screw-in socket (PP) with hose
4	Purge gas outlet analyzer	-	nozzles for hoses with inside diameter 4 mm
5	Reference gas inlet	Not in version for corrosive sample gas	(included in scope of delivery)
6	Reference gas outlet		 Connection of piping:
7	Purge gas inlet housing	Option	screw-in fittings (not included in scope of
8	Purge gas outlet housing	Optional, also with flow sensor	delivery)
9	Pressure sensor 1 Option		Note
10	Pressure Sensor 2	·	Gas connections 1 to 6 in the versions for
			corrosive sample gas or for flowing reference
			gas are made of PVC-C.
			Do not use metal tubing connectors or
			adapters!

Pneumatic module gas connections (optional - not in version with sample cell direct connection)

Pos.	Connection	Supplementary information	Design
11	Sample gas inlet	_	1/8 NPT female thread (stainless steel 1.4305)
			Connection of hose lines:
12	End-point gas inlet	With 3 solenoid valves	straight screw-in socket (PP) with hose
			nozzles for hoses with inside diameter 4 mm
13	Test gas/zero point gas inlet	With 1 or 3 solenoid valves	(included in scope of delivery)
			Connection of piping:
14	Sample gas outlet	To be connected to sample gas inlet 1	screw-in fittings (not included in scope of
	. 5	, ,	delivery)

... Gas connections

Caldos27

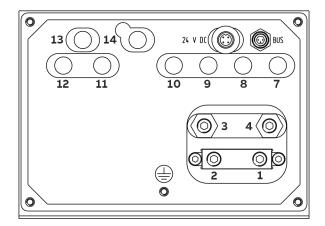


Figure 12: Gas connections Caldos27

Caldos27 gas connections

The sample cell is connected directly to the gas ports.

Pos.	Connection	Supplementary information	Design
1	Sample gas inlet	_	1/8 NPT female thread (stainless steel 1.4305)
2	Sample gas outlet	_	Connection of hose lines:
3	Purge gas inlet analyzer	_	straight screw-in socket (PP) with hose
4	Purge gas outlet analyzer	_	nozzles for hoses with inside diameter 4 mm
7	Purge gas inlet housing	Option	(included in scope of delivery)
8	Purge gas outlet housing	Optional, also with flow sensor	Connection of piping:
9	Pressure sensor 1	_	screw-in fittings (not included in scope of
10	Pressure Sensor 2	-	delivery)

Gas connections pneumatic module (option)

Pos.	Connection	Supplementary information	Design
11	Sample gas inlet	_	 NPT female thread (stainless steel 1.4305) Connection of hose lines:
12	End-point gas inlet	With 3 solenoid valves	straight screw-in socket (PP) with hose nozzles for hoses with inside diameter 4 mm
13	Test gas/zero point gas inlet	With 1 or 3 solenoid valves	(included in scope of delivery)Connection of piping:
14	Sample gas outlet	To be connected to sample gas inlet 1	screw-in fittings (not included in scope of delivery)

Fidas24

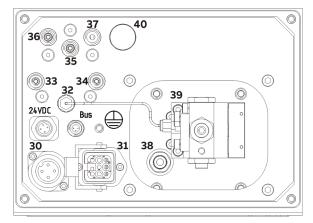
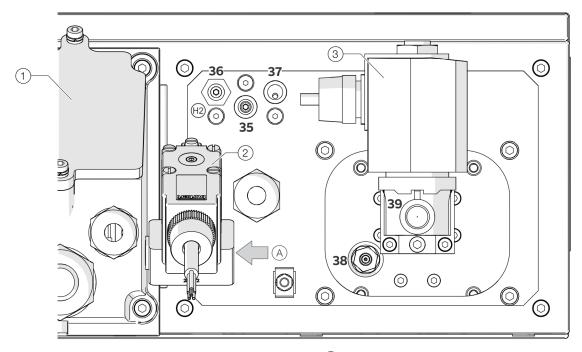


Figure 13: Gas and electric connections Fidas24 and Fidas24 NMHC

Gas connections of the analyzer

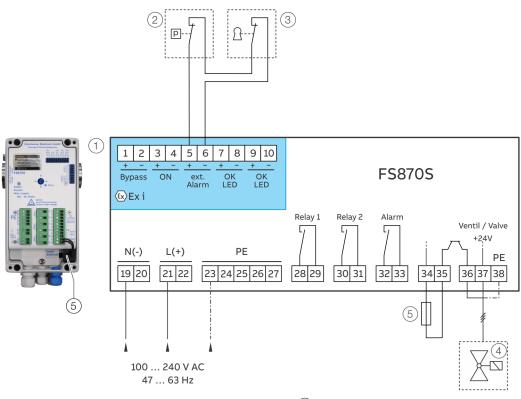

Pos.	Connection	Supplementary information	Design
32	Test gas outlet	-	1/8 NPT female thread for threaded connections
33	Zero-point gas inlet	_	(not included in scope of supply)
34	End-point gas inlet	<u> </u>	
35	Combustion air inlet	<u> </u>	
36	Combustion gas inlet	_	
37	Instrument air inlet	_	
38	Exhaust outlet	Note	Compression fitting for pipes with an outside
		The inside diameter of the exhaust line must be	diameter of 6 mm
		increased to $\emptyset \ge 10$ mm a maximum of 30 cm	
		downstream of the exhaust outlet.	
39	Sample gas inlet	Sample gas line connection	Threaded connection for PTFE or stainless steel
		To heated sample gas inlet:	tubing with a 6 mm outside diameter
		 In wall-mount housing: bottom and right 	
		 In 19-inch housing: back, top and bottom 	
		To unheated sample gas inlet:	
		 In wall-mount and 19-inch housing: back 	
40	Pressure equalizing opening	With protective filter	_

Electrical connections

Pos.	Connection	Supplementary information	Design
30	Power supply 115 / 230 V AC	For heating the detector with converter and sample gas	4-pin male connector, connection cable included
		inlet	in scope of supply
31	Power supply (output)	Electrical connection to the heated sample gas	Permanently connected
		connection	

... Gas connections

Fidas24 Ex


- 1 Connection box
- 2 Purging gas valve

3 Sample gas valve

Figure 14: Position of the gas connections AO2040-Fidas24 Ex

Pos.	Connection	Supplementary information	Design
35	Combustion air inlet		1/8" NPT female thread for threaded connections
36	Combustion gas inlet	with pre-assembled flow restrictor	(not included in scope of supply)
37	Instrument air inlet	_	
38	Exhaust outlet	_	Male thread for connection of the exhaust air pipe
			(stainless steel tube with an outside diameter of
			10 mm, included in the scope of supply of the gas
			analyzer)
39	Sample gas inlet	Connection options for heated or unheated sample gas lines.	G 1/4" NPT female thread for threaded connections
			(not included in scope of supply)
(A)	Purging gas inlet	Purging gas inlet for the pressurized enclosure Ex-p.	G 3/8" NPT female thread for threaded connections
_			(not included in scope of supply)

Purging and monitoring unit FS870S

- 1 Purging and monitoring unit FS870S
- 2 Pressure switch for monitoring of the instrument air
- (3) Key switch for category 3D / 2D (Dc / Db)

Image 15: Purging and monitoring unit FS870S

4 Magnetic valve for the purging gas

5 Fuse for purging gas solenoid valve

Note

The components (2), (3), (4), (5) as well as the power supply to the gas analyzer are pre-wired at the factory.

Connections for power supply on the FS870S purging and monitoring unit

Terminal	Function/comments	
19 / N	Neutral conductor	
21 / L	Phase	
23 / PE	Protective earth (PE)	

Relay output connections

	•
Terminal	Function/comments
28 / 29	Relay output 1 / 2
	De-energize the gas analyzer, pre-wired at the factory
30 / 31	be energize the gas analyzer, pre wheat at the factory
32	Alarm output
	Potential-free relay output for external signal transmitter,
33	maximum 235 V AC, 5 A
	maximum 233 v AC, 3 A

Connections for intrinsically safe inputs/outputs

Terminal	Function/comments
1/2	Not assigned
3/4	Not assigned
5/6	Input "Ext. Alarm"
	Connected to the pressure switch internally, for monitoring
	of the instrument air supply.
	With devices for category 3D / 2D (Dc / Db), the additional
	key switch is also connected here.
7+ / 8-	Not assigned
9+ /10-	Not assigned

Use in potentially explosive atmospheres

Explosion protection acc. to ATEX / IECEx

Uras26, Magnos206, Magnos28, Caldos25 and Caldos27

The AO2000 Series gas analyzers with Uras26, Magnos206, Magnos28, Caldos25 and Caldos27 in category 3G for measurement of flammable and non-flammable sample gas ('Safety concept') satisfy the European standards EN 60079-15:2010, EN 60079-2:2014, EN 60664-1:2007.

Ex marking

(E) II 3G Ex nA pyb II T4 Gc

Uras26, Magnos206, Magnos28, Magnos27, Caldos25 and Caldos27

The AO2000 Series gas analyzers with Uras26, Magnos206, Magnos28, Magnos27, Caldos25 and Caldos27 in category 3G for measurement of non-flammable sample gas satisfy the European standards EN 60079-15:2010, EN 60664-1:2007.

Ex marking

(E) II 3G Ex nA nC IIC T4 Gc

LS25 laser analyzer module

The LS25 analyzer module in category 3G for measurement of flammable and non-flammable sample gas satisfy the European standards

EN 60079-0:2012 + A11:2013, EN 60079-15:2010, EN 60079-28:2015, EN 60079-31:2014.

Ex marking

Refer to **Use in Potentially Explosive Atmospheres** on page 50.

AO2040-Fidas24 Ex

The AO2040-Fidas24 Ex is an explosion proof version of the Fidas24 analyzer module.

The AO2040-Fidas24 Ex is a standalone variant of the AO2000.

Ex marking

Refer to Explosion protection on page 41.

Explosion protection according to U.S. and Canadian standards – CSA

The AO2000 Series gas analyzers with Uras26, Limas21 UV, Limas21 HW, Magnos206, Magnos28, Magnos27, Caldos25, Caldos27 and LS25 are certified for use in potentially explosive atmospheres Class 1, Division 2, Groups A, B, C, and D, Temperature code T4, ambient temperature see **Ambient temperature** on page 76.

Housing versions not equipped with conduit entries ('conduit entries') must be installed in a suited cabinet with provisions electrical connections in accordance with Division 2 wiring methods.

Certificate no.

1105720

Explosion protection for the customs union of Russia, Belarus and Kazakhstan – EAC TR CU

The AO2000 Series gas analyzers in the 'Safety Concept' version are certified for use in Zone 2 environments.

The AO2040-Fidas24 Ex is certified for use in Zone 1 or Zone 2 environments.

Certificate no.:

EA9C RU C-DE.MЮ62.B.0137519

Explosion protection for China - NEPSI

The AO2000 Series gas analyzers with Uras26, Magnos206, Caldos25 and Caldos27 are certified for use in potentially explosive atmospheres. The gas analyzers may be used for measurement of non-flammable gases and vapors.

Marking

Ex nA nC IIC T4 Gc

Certificate no.

GYJ17.1139X

The AO2000 Series gas analyzers with Uras26, Magnos206, Caldos25 and Caldos27 are certified for use in potentially explosive atmospheres. They may be used for measurement of flammable gases and vapors.

Marking

Ex nA nC py IIC T4 Gc

Certificate no.

GYJ17.1140X

Explosion protection for South Korea - KCs

The AO2000 Series gas analyzers with Uras26, Magnos206, Caldos25 and Caldos27 are certified for use in potentially explosive atmospheres. They may be used for measurement of flammable gases and vapors.

Marking

No release of flammable sample gas

Certificate no.

16-GA4BO-0670X

Version in category II 3G for measurement of flammable and non-flammable gases ('Safety Concept')

The analyzer modules for the 'Safety Concept' are as follows

- Uras26 in the version with safety cell and purged sample cell windows
- Magnos206, Magnos28, Caldos25 and Caldos27 in the version with direct sample chamber connection and purged thermostat housing.

The version satisfies the provisions of the European Directive 94/9/EG (ATEX Directive).

Monitoring of the purge gas flow rate is a feature of the 'Safety Concept'. It is fully integrated into the gas analyzer, together with the controls and signal processing.

The version complies with the Directive 2014/34/EU (ATEX directive).

There are the following explosion protection measures in the gas analyzer:

- Non-sparking assemblies and components/nonincendive components/gasketed (sparking) devices in accordance with EN 60079-15 and
- Simplified positive pressurized enclosure per EN 60079-2.

Ex marking

😉 II 3G Ex nA pyb II T4 Gc

Housing protection type

IP 54

Gas connections

Refer to Gas connections 'Safety concept' on page 71.

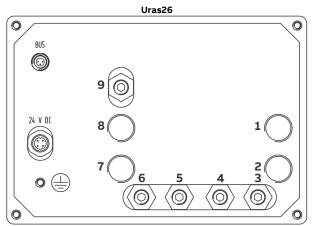
... Use in potentially explosive atmospheres

Sample gas inlet conditions

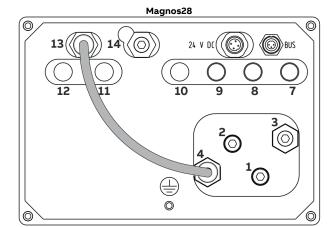
'Safety Concept' – Sample gas inlet conditions			
Sample gas			
Flammable and non-flammable	gases and vapors are not explosive in		
standard operation, if they are	potentially explosive in the event of a		
malfunction, then only rarely an	nd for a short time (according to Zone 2).		
Absolute pressure	≤ 1.2 bar		
Oxygen content	≤ 21 vol. %		
Temperature class	T4		
Designation of gas connection	s		
On the sample gas inlet:	Gauge pressure p _e ≤ 3 hPa		
On the sample gas outlet:	"Analyzer Purge Out"		
Flow rate	Max. 40 l/h		
Sample gas shut off			
By the operator during decomn	nissioning of the gas analyzer and in case of		
an alarm (failure at the pressuri	ized enclosure) in accordance with the		

If the sample gas is a mixture only of oxygen and flammable gases and vapors, it must not be explosive under any conditions. As a rule, this can be achieved by limiting the oxygen content to a maximum of 2 vol.%.

 $additional\ special\ conditions\ for\ operation\ with\ flammable\ sample\ gases.$


Flammable gases and vapors that are explosive under the conditions encountered in analysis even when oxygen is excluded should be present in the mixture only in concentrations that are not critical to safety.

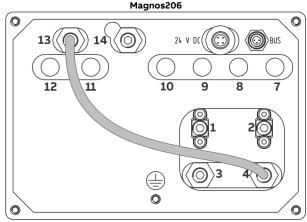
Purge gas for pressurized enclosure


'Safety Concept' – Purge gas inlet conditions		
Purge gas (protective	Inert gas (N ₂)	
inert gas)		
Flow rate	 During operation: 15 to 20 l/h 	
	 During pre-purge: 15 to 50 l/h 	
Designation of gas	Positive operating pressure	
connections	pe ≥ sample gas pressure + 0.5 hPa	
Initial purge*	Compliance with the above purge gas flow rate	
	is monitored in the gas analyzer.	
	• Uras26:	
	1.6 minutes at a minimum of 15 l/h;	
	 Magnos206, Caldos25, Caldos27: 	
	18 minutes at a minimum of 15 l/h or	
	6 minutes at a minimum of 50 l/h	
Alarm	When the flow rate down-scales a minimum	
	value of 15 l/h (corresponds to approx. 7 hPa)	
	and when the flow rate up-scales a maximum	
	value of 50 l/h (corresponds to approx. 60 hPa)	

Pre-purging is not necessary if it can be proven that there is no flammable sample gas in the sample gas path or in the purging gas path.

Gas connections 'Safety concept'

- 1 Sample gas inlet gas path 1
- 2 Sample gas outlet gas path 1
- 3 Purge gas inlet sample cell windows 'Analyzer purge in'
- 4 Purge gas inlet housing
- **5** Purge gas outlet housing
- **6** Purge gas outlet 'Analyzer Purge Out' flow rate monitoring
- 7 Sample gas outlet gas path 2
- 8 Sample gas inlet gas path 2
- 9 Pressure sensor (option)



- Sample gas inlet
- 2 Sample gas outlet

1

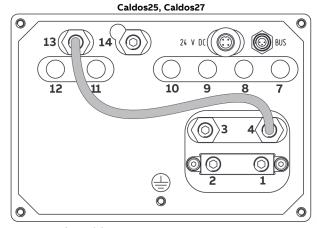

- 3 Purge gas inlet thermostat chamber 'Analyzer purge in'
- 4 Purge gas outlet thermostat chamber, piped with 13
- Purge gas inlet housing
- 8 Purge gas outlet housing
- 9 Pressure sensor 1
- 10 Pressure Sensor 2
- 11 not used, sealed
- Purge gas outlet flow rate monitor, piped with 4
- 14 Purge gas outlet 'Analyzer Purge Out' flow rate monitoring

Figure 16: Safety Concept' gas connections Uras 26, Magnos28

- 1 Sample gas inlet
- 2 Sample gas outlet
- 3 Purge gas inlet thermostat chamber 'Analyzer purge in'
- 4 Purge gas outlet thermostat chamber, piped with 13
- 7 Purge gas inlet housing
- 8 Purge gas outlet housing
- 9 Pressure sensor 1
- 10 Pressure Sensor 2
- 11 not used, sealed
- 12 not used, sealed
- 13 Purge gas outlet flow rate monitor, piped with 4
- 14 Purge gas outlet 'Analyzer Purge Out' flow rate monitoring

Figure 17: Safety Concept' gas connections Uras 26, Magnos28

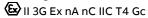
- L Sample gas inlet
- Sample gas outlet
- 3 Purge gas inlet thermostat chamber 'Analyzer purge in'
- 4 Purge gas outlet thermostat chamber, piped with 13
- 7 Purge gas inlet housing
- 8 Purge gas outlet housing
- **9** Pressure sensor 1
- 10 Pressure Sensor 2
- 11 not used, sealed
- 12 not used, sealed
- 13 Purge gas outlet flow rate monitor, piped with 4
- 'Analyzer Purge Out' purge gas outlet flow monitoring

... Use in potentially explosive atmospheres

Version in category II 3G for measurement of non-flammable gases

The explosion-proof design in IP rating II 3G for the measurement of non-flammable gases and vapors is a special version of the gas analyzers of the AO2000 series.

The analyzer modules Uras26, Magnos206, Magnos28, Magnos27, Caldos25 and Caldos27 are suited for measuring non-flammable gases.


The analyzer modules are mounted in the central unit housing or in a separate housing (either wall-mount or 19" rack unit).

The version complies with the Directive 2014/34/EU (ATEX directive).

The gas analyzer is protected by measures in accordance with EN 60079-15 (non-sparking electric equipment, gasketed sparking devices).

In undisturbed operation, there cannot be any sparking, arcing or impermissible temperatures inside the device. During operation, all unused gas ports should be plugged.

Ex marking

Housing protection type

IP 54

General data

Operation

LCD display

Backlit graphics display, 320 x 240-pixel resolution

Measured value display

Digits with unit and bargraph; simultaneous display of up to 6 measured values, configurable

Units of measure

Selectable in physical units, e.g. ppm, vol.-%, mg/m^3 or g/m^3 , as well as in % of span or mA

Digital value resolution

Better than 0.2 % of span

Status display

- Green LED: Power supply switched on
- Yellow LED: Maintenance required
- · Red LED: Failure

Status messages

Plain text

Use

Panel with six soft keys, two cancel keys and 10-digit keypad; menu-driven interface, various languages available

Measuring range switchover and feedback

There are three ways of executing the measuring range switch-over:

- · Manually on the gas analyzer
- Automatically ('autorange') by means of appropriate configured switch-over thresholds
- Externally controlled via appropriately configured digital inputs

The measuring range feedback can be implemented via appropriately configured digital outputs; it is independent of the se-lected type of measuring range switch-over.

Limit value monitoring

Limit values can be set during the gas analyzer configuration. The limit value signals (alarms) are output via digital outputs.

Housing

Versions

19" housing (model AO2020) or wall-mount housing (model AO2040)

Housing protection type

- IP 65 without power supply and without display and control unit.
- IP 54 with display and control unit and with connection box,
- IP 20 without connection box in accordance with EN 60529

Housing materials

- Housing: stainless steel 1.4016
- · Module back wall: aluminum
- · Keyboard membrane: polyester

Housing color

Light gray (RAL 7035), basalt gray (RAL 7012)

Weight

Analyzer unit with one analyzer module: 18 to 23 kg

Dimensions

Refer to **Dimensions** on page 81.

Housing purge

Housing purge is possible with the IP 54 version with connection box.

The version can be fitted with screwed cable glands (in accordance with EN) or with conduit connections (in accordance with CSA).

Purge gas flow during operation max. 20 l/h (Fidas24, Fidas24 NMHC: approx. 300 l/h), purge gas pressure $p_a = 2 \text{ to } 4 \text{ hPa}.$

The purge gas should not contain any sample gas components.

... General data

Pressure sensor

Use

Analyzer module	Pressure sensor
Uras26, Limas21 UV,	Factory-installed as standard
Limas21 HW, Caldos27	
Magnos206, Magnos28,	Factory-installed as an option
Magnos27	
Caldos25, Fidas24, ZO23	Not required

Working range

p_{abs} = 600 to 1250 hPa

Wetted materials

Silicone gel, plastics, FPM (Fluorocarbon rubber)

Sample gas composition

The pressure sensor must not be connected to the sample gas path when the sample gas is corrosive, flammable or explosive.

Gas connections

Layout

Gas ports on back (19" rack housing) or bottom (wall-mount housing) of the analyzer module.

Version

1/8 NPT female threads for commercially available adapters, e.g. Swagelok®, unless other versions are specified in the specification of the individual analyzer modules.

Refer to **Gas connections** on page 56.

Electrical connections

Central unit

- Power supply:
 3-pin grounded-instrument connector according to EN 60320/C14, connection cable supplied
- Ethernet: two 8-pin RJ45 female connectors
- System bus (3-pin female connector)

Analyzer modules

- · Power supply: 4-pin male connector
- Heating of detector and sample gas inlet (Fidas analyzer modules): 4-pin male connector, connection cable included in delivery
- System bus (3-pin female connector)

AO2040-Fidas24 Ex

The power supply cable is connected to the corresponding terminals of the purging and monitoring unit, refer to **Purging and monitoring unit FS870S** on page 67.

Power supply

Power supply unit

The central unit power supply provides 24 VDC for the electronics module and one analyzer module installed in the central unit or one external analyzer module.

Input voltage	100 to 240 V AC, -15 %, +10 %	
Input Current	2.2 A max	
Line Frequency Range	50 to 60 Hz, ±3 Hz	
Power consumption	Max. 187 VA	
Output Voltage	24 V DC, ±3 %	
Connection	n 3-pin grounded-instrument connector to	
	EN 60320/C14,	
	connection cable in scope of supply	

Power consumption of the analyzer modules

Module	Davisa sanayantian
Module	Power consumption
System Controller	approx. 15 W.
I/O modules	each approx. 10 W
Caldos25	max. 25 W
Caldos27	max. 17 W
Fidas24	max. 40 W
Fidas24 NMHC	max. 40 W
Limas21 UV	max. 100 W
Limas21 HW	max. 100 W
Magnos206	max. 50 W
Magnos28	max. 50 W
Magnos27	max. 35 W
Uras26	Max. 95 W
ZO23	approx. 12/35 W in continuous/starting
	operation
Pneumatic Module	Approx. 20 W

Fidas24: Heating of detector and sample gas inlet

Input voltage	115/230 V AC, ± 15 % (max. 250 V AC)
Line Frequency Range	47 to 63 Hz
Power consumption	125 VA for Fidas24 detector,
	approx. 200 VA for Fidas24 NMHC detector,
	125 VA for sample gas inlet (option)
Connection	4-pin male connector, connection cable included
	in scope of supply

Safety

In accordance with EN 61010-1

Protection class

- · System housing: Protection class I
- Analyzer module: Protection class III

Overvoltage category

Ш

Pollution degree

2

Safe isolation

The power supply is electrically isolated from other circuits by means of reinforced or double insulation. Operational low voltage (PELV) on low-voltage side.

Electromagnetic compatibility

In accordance with EN 61326-1

Noise immunity

Inspection level: industrial area, fulfills at least the evaluation criteria according to Table 2 of EN 61326-1.

Emitted interference

Limit values class B for electromagnetic radiation disturbance and conducted disturbance are met.

Emitted interference AO2040-Fidas24 Ex

Limit value class A for interference field strength and interference voltage is met.

... General data

Mechanical stress

Transport

Vibration test per EN 60068-2-6:1996. Shock test per EN 60068-2-27:1995.

In its original packaging, the gas analyzer withstands normal shipping conditions.

Requirements for the installation site

Installation location

The gas analyzer is intended for indoor installation only. The specification of the gas analyzer is applicable up to an altitude of 2000 m above sea level. Altitude above 2000 m on request.

The installation site must be stable enough to bear the weight of the gas analyzer!

Vibrations/shocks

- If the gas analyzer is installed in a cabinet, the maximum acceleration amplitude may not exceed 0.01 ms⁻² in a frequency range of 0.1 to 200 Hz.
- If the gas analyzer is not installed in a cabinet, the following data for the individual analyzer modules apply.

Analyzer module	Vibration	
Uras26	max. ±0.04 mm at 5 to 55 Hz, 0.5 g at 55 to 150	
	Hz, slight transient effect on measured value in	
	the area of the beam modulation frequency	
Limas21 UV	max. ±0.04 mm at 5 to 55 Hz,	
	0.5 g at 55 to 150 Hz	
Limas21 HW	max. ±0.04 mm/0.5 g at 5 to 150 Hz	
Magnos206	max. ±0.04 mm at 5 to 20 Hz	
Magnos28	max. ±0.04 mm at 5 to 20 Hz	
Magnos27	max. ±0.04 mm at 5 to 60 Hz	
ZO23	max. ±0.04 mm at 5 to 55 Hz,	
	0.5 g at 55 to 150 Hz	
Caldos25	max. ±0.04 mm at 5 to 30 Hz	
Caldos27	max. ±0.04 mm at 5 to 55 Hz,	
	0.5 g at 55 to 150 Hz	
Fidas24	Max. 0.5 g, max. 150 Hz	
Fidas24 NMHC	Max. 0.5 g, max. 150 Hz	
LS25	Max. ±0.6 mm around the optical axis,	
	max. 500 Hz	

Note

For compliance with the metrological data, a vibration damped/decoupled installation of the gas analyzer may be necessary in accordance with the vibration effects at the installation site.

Ambient temperature

Analyzer module	During operation when installed in housing	
	Caldos27	without electronics
		module
Uras26	+5 to +40 °C	+5 to 45 °C (41 to 113 °F)
Limas21 UV	+5 to +40/45 °C	+5 to 45 °C (41 to 113 °F)
	with/without I/O ca	ırds
Limas21 HW	+15 to +35 °C	+15 to +35 °C
Magnos206	+5 to 45 °C (41 to 11	3 °F) +5 to 50 °C
Magnos28	+5 to 45 °C (41 to 11)	3 °F)+5 to 50 °C
Magnos27	+5 to 45 °C (41 to 11	3 °F) +5 to +45 °C,
		+5 to +50 °C*
ZO23	+5 to 45 °C (41 to 11	3 °F) +5 to 45 °C (41 to 113 °F)
Caldos25	+5 to 45 °C (41 to 11	3 °F)+5 to 45 °C (41 to 113 °F)
Caldos27	+5 to 45 °C (41 to 11	3 °F) +5 to 50 °C
Fidas24	+5 to 45 °C (41 to 11	3 °F)+5 to 45 °C (41 to 113 °F)
Fidas24 NMHC	+5 to +40 °C	+5 to +40 °C
LS25	-20 to +55 °C, no dir	rect solar radiation
Oxygen sensor +5 to +40 °C in a 19" housing		housing,
	+5 to +35 °C in a wal	ll unit
Central unit without		
analyzer module	+5 to +55 °C	

 With direct sample cell connection and when installed in housing without Uras26

Relative humidity

Maximum 75 %, no condensation

Climate class

- 3K3 for housing protection IP 20 (condensation not permitted)
- 3K4 for housing protection IP 54 (condensation permitted) in accordance with EN 60721-3-3

Air circulation

For sufficient air circulation, multiple housings in a 19" rack must be installed with a separation of at least 1 HU between housings.

Electronics module

Measured value and signal processing

Processor system with buffered real-time clock and non-volatile memory for firmware and device data.

Software updates can be obtained via the Ethernet interface.

I/O modules

Number of Slots

5 slots (see Terminal assignment on page 77)

Specification

Refer to I/O modules on page 78.

Notes regarding conductor cross-section

- The maximum capacity of terminals for stranded or solid conductors is 1 mm² (17 AWG).
- The stranded conductor may be tinned on the tip or twisted for simplified connection.
- When using wire end ferrules the total section must not exceed 1 mm², i.e. the maximum stranded conductor section cannot be greater than 0.5 mm². The Weidmüller PZ 6/5 crimping tool must be used for crimping the ferrules.

Interfaces

Ethernet

To connect the gas analyzer to Ethernet networks. TCP/IP protocol and Modbus TCP/IP protocol via 10/100/1000BASE-T interface.

Electrical connection: Two 8-pin RJ45 plugs

System bus

Internal bus for communication between the gas analyzer's functional units.

Electrical connection: 3-pin female connector

Power supply

Input voltage

24 V SC, ±3 % from the power supply built in the system housing (see **Power supply unit** on page 74)

Power

approx. 15 W without I/O modules

Terminal assignment

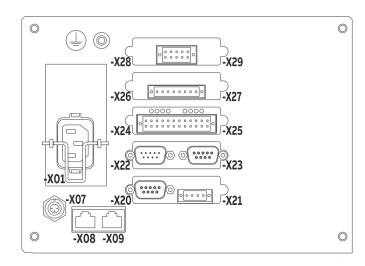


Image 18: Terminal assignment of electronic module (example)

Connection	Description
-X01	Power supply
	(refer to 74)
-X07	System bus
	(refer to System bus on page 4)
-X08, -X09	Ethernet 10/100/1000BASE-T interfaces
-X20 to -X29	I/O modules (5 slots), options:
	 Profibus-module
	(refer to PROFIBUS®-Module on page 78)
	 Modbus-module
	(refer to Modbus®-Module on page 78)
	 Analog output module (2 or 4-channel)
	(refer to Analog output modules on
	page 80)
	 Analog output module
	(refer to Analog input module on page 80)
	 Digital-I/O-module
	(refer to Digital I/O module on page 79)
(1)	Connection for potential equalization

_

I/O modules

PROFIBUS®-Module

Application

Integration of the gas analyzer into PROFIBUS PA and PROFIBUS DP networks for transfer of measured values and status signals as well as analog input, digital input and digital output signals.

Digital data transmission certified in accordance with the VDI 4201 guideline, Sheet 1 and Sheet 2.

Electrical connections

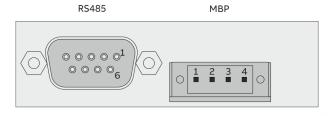


Image 19: PROFIBUS® module

RS485 interface

Version: 9-pin sub-D female connector

Pin	Signal	Description
1	_	not assigned
2	M24	24 V output voltage, ground
3	RxD/TxD-P	Receive/transmit data plus, B-line
4	_	not assigned
5	DGND	Data transmission potential
		(Reference potential for VP)
6	VP	Supply voltage plus (5 V)
7	P24	24 V output voltage plus, max. 0.2 A
8	RxD/TxD-N	Receive/transmit data N, A-line
9	_	not assigned

MBP Interface (not intrinsically safe)

Model: 4-pole plug-in terminal strip with mating connector (included in the scope of delivery).

Pin	Signal	
1	+	
2	Shield	
3	-	
4	not used	

Modbus®-Module

Application

Transmission of measured values and status signals as well as analog input, digital input and digital output signals to higher-level systems, e.g. to Windows standard applications via an M-DDE server.

Modbus slave protocol in RTU (Remote Terminal Unit) mode either via the RS232 or the RS485 interface (configurable).

Electrical connections

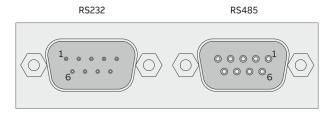
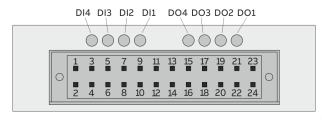


Figure 20: Modbus module

RS232 Interface

Version: 9-pin sub-D male connector

Pin	Signal	
2	RxD	
3	TxD	
5	GND	


RS485 interface

Version: 9-pin sub-D female connector

Pin	Signal
2	RTxD-
3	RTxD+
5	GND

Digital I/O module

Electrical connections

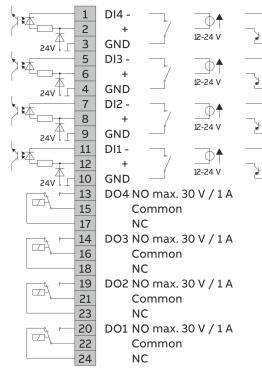


Image 21: Electrical connections, digital I/O module

Digital inputs DI1 to DI4

Optocouplers with internal 24 V DC power supply. Control system alternatively available with potential-free contacts, with external voltage 12 to 24 V DC or with PNP or NPN opencollector driver.

Digital outputs DO1 to DO4

Potential-free changeover contacts, maximum contact load capacity 30 V/1 A.

Relays must at all times be operated within the specified data range.

Inductive or capacitive loads are to be connected with suitable protective measures (self-induction recuperation diodes for inductive loads and series resistors for capacitive loads).

Relays are shown in the unpowered state.

The unpowered state corresponds to the state in the event of a fault ("fail safe").

Version

 2×12 -pole plug-in terminal strip with mating connector (included in the scope of delivery).

... I/O modules

Analog output modules

The analog output modules is available in two variants:

- As a 2-way analog output module with two independent analog outputs
- As a 4-way analog output module with four independent analog outputs

Analog outputs AO1 to AO4

0/4 to 20 mA (factory-set to 4 to 20 mA), common negative pole, electrically isolated from ground, freely connectible to ground, max. gain relative to protective ground potential 50 V, max. load 750 Ohm. Resolution 16 bit. The output signal cannot be lower than 0 mA.

Electrical connections

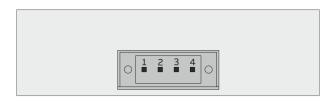


Image 22: 2-way analog output module

Image 23: 4-way analog output module

Pin	Signal
1	AO1+
2	AO1-
3	AO2+
4	AO2-
5	AO3+
6	AO3-
7	AO4+
8	AO4-

Version

4-pole or 8-pole plug-in terminal strip with counter plug (included in the scope of delivery).

Analog input module

Electrical connections

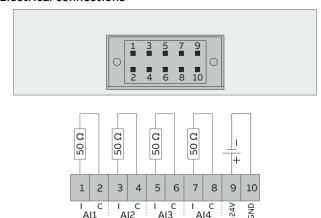


Figure 24: Analog input module

Pin	Signal	Description
1	Al1+	–20 to +20 mA, load 50 Ω ,
2	Al1-	up to 10 V isolated from each other
3	AI2+	
4	AI2-	
5	AI3+	
6	AI3-	
7	Al4+	
8	Al4-	
9	+24 V	+24 V DC for supply of an external sensor, fused with
10	GND	100 mA (self-resetting fuse)

Design

2x5-pin terminal strip with mating connector (included in the scope of delivery).

Dimensions

19" housing (model AO2020)

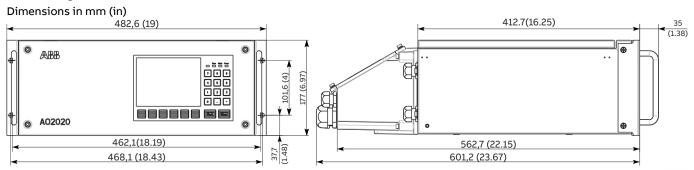
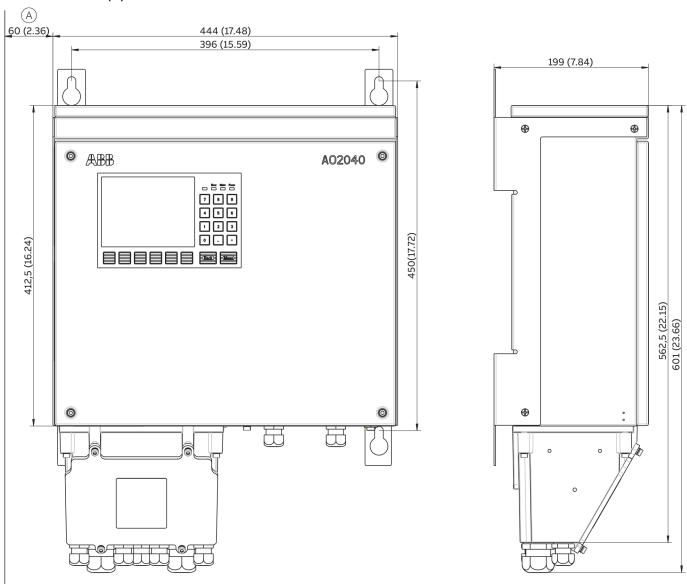
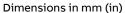



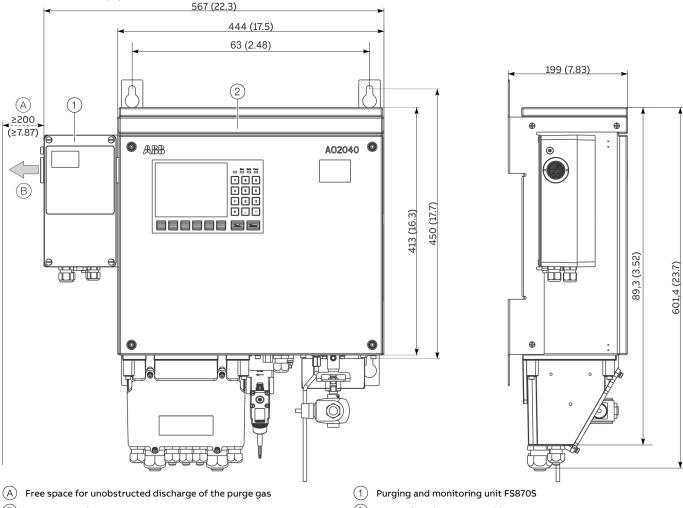
Figure 25: AO2020 dimensions

Wall-mount housing (model AO2040)

Dimensions in mm (in)

(A) Consider free space to swivel the door


Figure 26: AO2040 dimensions


... Dimensions

Additional information

- In the IP 54 version, the connection box shown in the dimensional drawings is flange-mounted to the housing.
- Adhere to the requirements at the installation site, refer to **Requirements for the installation site** on page 76.
- · Take into consideration the additional space required for the connecting lines (approx. 100 mm).
- During installation of the Fidas24 gas analyzer with heated sample gas connector, take into consideration the additional space requirement for the heated sample gas impulse line (observe minimum bend radius in accordance with manufacturer data).
- When installing the wall unit, make sure to provide free space on the left side needed to swing out the door (approx. 60 mm).
- When installing the wall-mounted housing, ensure that there is additional free space above the housing, as some modules are only accessible from the top (approx. 300 mm).
- Install both the 19" housing and the wall unit such that the display is oriented vertically.
- For sufficient air circulation of several system housings in a 19" rack unit, mount with a distance of at least 1 HU between each other.

Model AO2040-Fidas24 Ex

Purge gas outlet

System housing AO2040-Fidas24 Ex

Figure 27: Dimensions, Model AO2040-Fidas24 Ex

Additional information

- The connection box shown in the dimensional drawings is flange-mounted to the housing.
- Adhere to the requirements at the installation site, refer to Requirements for the installation site on page 76.
- The air outlet of the purging and monitoring unit must not be blocked.
- Take into consideration the additional space required for the connecting lines (approx. 100 mm).
- When mounting the gas analyzer, take the space required for the heated sample gas lines into account (observe the minimum bending radius, according to manufacturer's specifications).
- When installing the wall-mounted housing, ensure that there is additional free space above the housing, as some modules are only accessible from the top (approx. 300 mm).
- Mount the wall-mounted housing in such a way that the LCD display is clearly visible.

Approvals, tests and certificates

Performance tests

The gas analyzers of the AO2000 series Uras26 (measuring components CO, NO, SO_2 , CO_2 , N_2O), Magnos206 (measuring component O_2) and electrochemical oxygen sensor (measuring component O_2) are suited for use in incineration plants that require approval in accordance with European Directives 2001/80/EC (13th BImSchV) and 2000/76/EG (17th BImSchV) as well as in annexes of the 27th/30th BImSchV and TA-Luft.

The requirements of QAL1 according to EN 15267 and EN 14181 are fulfilled.

- Report no. 821029 of 6/30/2006;
 Notification: BAnz AT of 10/14/2006, no. 194, page 6715.
- Report no. 1249694 of 3/30/2009;
 Notification: BAnz AT of 8/25/2009, no. 125, page 2932.
- Report no. 1710933 of 9/30/2011;
 Notification: BAnz AT of 3/2/2012, no. 36, page 923.
- Report no. 936/21217137/A of 10/14/2011;
 Notification: BAnz of 3/2/2012, no. 36, page 922.
- Report no. 1958844 of 8/30/2013;
 Notification: BAnz of 4/1/2014, no. B12, page 15.

Uras26, Magnos206, Magnos28, oxygen sensor

The AO2000 Series gas analyzers Uras26 (sample components CO, NO, NOx, SO $_2$, N $_2$ O, CO $_2$), Magnos206 (sample component O $_2$), Magnos28 (sample component O $_2$) and electrochemical oxygen sensor (sample component O $_2$) meet the requirements of the 'MCERTS Performance Standards for Continuous Emission Monitoring Systems, Version 3.5 dated June 2016', EN 15267-3:2007 and QAL 1 in accordance with EN 14181:2014.

Certificate no. Sira MC080121/13 of 8/18/2017

Limas21 UV

The gas analyzers of the AO2000 series Limas21 UV (measuring components NO, NO $_2$, SO $_2$), and electrochemical oxygen sensor (measuring component O $_2$) are suited for use in incineration plants that require approval in accordance with European Directives 2001/80/EC (13th BImSchV) and 2000/76/EG (17th BImSchV) as well as in TA-Luft systems. The requirements of QAL1 according to EN 15267 and EN 14181 are fulfilled.

Report no. 2231669.1 of 9/1/2015;

Notification: BAnz AT of 3/14/2016, no. B7, page 2.

Fidas24

The gas analyzer of the AO2000 series Fidas24 (measuring component Total-C) is suited for use in systems that require approval (13th BlmSchV, 17th BlmSchV, 30th BlmSchV, TA-Luft) as well as in the annexes of the 27th BlmSchV. The requirements of QAL1 according to EN 15267 and EN 14181 are fulfilled.

Report no. 936/21228173/A of 10/21/2015; Notification: BAnz AT of 3/14/2016, no. B7, page 2.

Uras26 - Marine

The AO2000 Series gas analyzer Uras26 (sample components SO_2 and CO_2) is suited for use on vessels. The requirements of MEPC.184(59) and MEPC.259(68), Chapter 6 'Emission Testing' as well as the relevant requirements of Revised MARPOL Annex VI and NOx Technical Code 2008 are fulfilled. Certificate No. 30652-15 HH of November 27, 2015

Limas21 UV - Marine

The AO2000 Series gas analyzer Limas21 UV (sample components NO, NO_2 and NOx) is suited for use on vessels. The requirements of Revised MARPOL Annex VI and NOx Technical Code 2008 are fulfilled.

Certificate No. 31812-16 HH of 10/13/2016

CE conformity

The AO2000 series gas analyzers satisfy the requirements of the European directives:

- 2014/35/EU Low Voltage Directive,
- 2014/30/EU EMC Directive,
- 2014/34/EU ATEX Directive (explosion-proof designs only) and
- 2011/65/EU RoHS Directive

Approval for USA and Canada - CSA

The AO2000 series gas analyzers are certified for use in 'general purpose' environments, evidenced by full compliance with standards CAN/CSA-C22.2 no. 61010-1-12 and UL Std. No. 61010-1 (Third Edition).

Certificate No. 70012655

Approval for the customs union of Russia, Belarus and Kazakhstan – EAC TR CU

The AO2000 Series gas analyzers are certified for use in general purpose environment.

- EAC TR CU Certificate: EAЭC N RU Д-DE.HB26.B.0014519
- Metrological certificate for Russia: No. 79593-20

Sample components. smallest measuring ranges and suited analyzer modules

The following table lists the sample components that can be measured with the AO2000 Series gas analyzers (other sample components available on request). In each case, the smallest measuring range and the suited analyzer module are given. Please see the data of the individual analyzer modules. The sample components and smallest measuring ranges for the LS25 analyzer are specified in a separate table here: page 46.

Sample component		Requirements (examples)	Smallest range	Analyzer module	Data
Acetylene	C ₂ H ₂	Small meas. ranges, selective measurement	0 to 100 ppm	Uras26	page 6
Ammonia	NH ₃	Process measurement	0 to 30 ppm	Uras26	
		Combustion exhaust gas	0 to 100 ppm	Limas21 HW	page 12
Argon	Ar in N ₂	Especially short T ₉₀ time	97.5 to 100 Vol%	Caldos27	page 31
	Ar in O ₂	Especially short T ₉₀ time	0 to 2 Vol%	Caldos27	
Butane	C ₄ H ₁₀	Small meas. ranges, selective measurement	0 to 50 ppm	Uras26	page 6
Chlorine	Cl ₂	Corrosive gases	0 to 100 ppm	Limas21 UV	page 9
Nitrous oxide	N ₂ O	Small measurement ranges	0 to 20 ppm	Uras26	page 6
Ethane	C ₂ H ₆	Small meas. ranges, selective measurement	0 to 50 ppm	Uras26	
Ethylene	C ₂ H ₄	Small meas. ranges, selective measurement	0 to 300 ppm	Uras26	
Helium	He in N ₂	Especially short T ₉₀ time	97 to 100 Vol%	Caldos27	page 31
Hexane	C ₆ H ₁₄	Selective measurement	0 to 100 ppm	Uras26	page 6
Refrigerant	R 134a	Small measurement ranges	0 to 50 ppm	Uras26	
Carbon dioxide	CO2	Small measurement ranges	0 to 5 ppm	Uras26	
	CO ₂ in N ₂ or air	Especially short T ₉₀ time	0 to 3 Vol%	Caldos27	page 31
Carbon disulfide	CS ₂	Toxic/flammable gases	0 to 50 ppm	Limas21 UV	page 9
Carbon monoxide	со	Small meas. ranges, emission measurement	0 to 10 ppm	Uras26	page 6
Carbon oxide sulfide	cos	Toxic/flammable gases	0 to 250 ppm	Limas21 UV	page 9
Hydrocarbons	Total	Fast hot measurement	0 to 5 mg C/m ³	Fidas24	page 34
,	C _n H _m - CH ₄	Non-methane measurement	0 to 5 mg C/m ³	Fidas24 NMHC	page 38
Methane	CH₄	Small meas. ranges, selective measurement	0 to 50 ppm	Uras26	page 6
	CH ₄ in N ₂	Especially short T ₉₀ time	99 to 100 Vol%	Caldos27	page 31
	CH ₄ in N ₂ or air	Especially short T ₉₀ time	0 to 2 Vol%	Caldos27	h3
Propane	C ₃ H ₈	Small meas. ranges, selective measurement	0 to 50 ppm	Uras26	page 6
Propylene	C ₃ H ₆	Small meas. ranges, selective measurement	0 to 100 ppm	Uras26	. 3
Oxygen	O ₂	Magnetomechanical measurement principle	0 to 0.5 Vol%	Magnos206	page 17
, ,	L	Magnetomechanical measurement principle	0 to 0.5 Vol%	Magnos28	page 20
		Trace measurement with Z _r O ₂ cell	0 to 1 ppm	ZO23	page 25
		Electrochemical measurement principle	0 to 5 Vol%	Oxygen sensor	page 53
	O ₂ in N ₂	Thermomagnetic measurement principle	0 to 3 Vol%	Magnos27	page 23
	O ₂ in flue gas	Thermomagnetic measurement principle	0 to 3 Vol%	Magnos27	
Sulfur dioxide	SO ₂	Emission measurement	0 to 25 ppm	Uras26	page 6
	_	Corrosive gases	0 to 25 ppm	Limas21 UV	page 9
	SO ₂ in N ₂ or air	Corrosive gases	0 to 1.5 Vol%	Caldos25	page 28
Hydrogen sulfide	H ₂ S	Exhaust gas, process measurement	0 to 25 ppm	Limas21 UV	page 9
Nitrogen dioxide	NO ₂	Corrosive gases	0 to 50 ppm	Limas21 UV	
		Combustion exhaust gas	0 to 10 ppm	Limas21 HW	page 12
Nitrogen monoxide NO		Emission measurement	0 to 75 ppm	Uras26	page 6
		Small measurement ranges	0 to 10 ppm	Limas21 UV	page 9
		Combustion exhaust gas	0 to 10 ppm	Limas21 HW	page 12
Hydrogen	H ₂ in Ar	Especially short T ₉₀ time	0 to 0.25 Vol%	Caldos27	page 31
	H ₂ in C _{l2}	Corrosive gases	0 to 0.5 Vol%	Caldos25	page 28
	H ₂ in stack gas	Especially short T ₉₀ time	0 to 0.5 Vol%	Caldos27	page 31
	H ₂ in N ₂	Especially short T ₉₀ time	99 to 100 Vol%	Caldos27	
	H ₂ in N ₂ or air	Corrosive gases	0 to 0.5 Vol%	Caldos25	page 28
		Especially short T ₉₀ time	0 to 0.3 Vol%	Caldos27	page 31

Trademarks

Modbus is a registered trademark of Schneider Automation Inc.

PROFIBUS, PROFIBUS PA and PROFIBUS DP are registered trademarks of PROFIBUS & PROFINET International (PI)

Swagelok is a registered trademark of the Swagelok Company

Windows is a registered trademark of Microsoft Corporation.

ABB Measurement & Analytics

For your local ABB contact, visit:

www.abb.com/contacts

For more product information, visit:

www.abb.com/analytical

We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail.

ABB does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.

We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of its contents – in whole or in parts – is forbidden without prior written consent of ABB.